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Abstract. We prove that for any monotone area-preserving diffeomorphism of a
closed surface, or Reeb flow on a closed contact three-manifold with torsion Chern
class, the complement of a compact invariant set is never minimal. As a corollary, we
obtain that, under the same assumptions, there are infinitely many distinct proper
compact invariant sets whose union is dense in the manifold. No genericity assump-
tions are required. The former class of systems includes all Hamiltonian diffeomor-
phisms of closed surfaces and the latter includes all Finsler geodesic flows on closed
surfaces. We can view our results as generalizations, in the smooth symplectic setting,
to higher genus surfaces and three-manifolds of results of Le Calvez–Yoccoz, Franks,
and Salazar for homeomorphisms of the two-sphere. Our results also give such a
generalization for Finsler geodesic flows on closed surfaces.

Along the way, we prove a result, in any dimension, of potentially independent in-
terest, detecting invariant sets via sequences of low-action pseudoholomorphic curves
with controlled topology; as a corollary, this generalizes Ginzburg–Gürel’s “crossing
energy bound” for Floer cylinders to punctured holomorphic curves, of arbitrary topol-
ogy, in symplectizations, resolving an open question posed by them. Another feature
of the argument which also might be of independent interest is a probabilistic result
stating that almost all ECH/PFH U -map curves have Euler characteristic at least ´2
under the above assumptions.
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1. Introduction

1.1. Le Calvez-Yoccoz phenomena. The detection and classification of compact
invariant sets is a fundamental question in dynamical systems. For example, a natural
question asks how much of the parameter space is seen by a given trajectory; the closure
of any such trajectory is a compact invariant set. For diffeomorphisms of the circle
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and smooth flows on the plane, the theorems of Denjoy [20] and Poincaré–Bendixson
[5] give a nearly complete picture. The situation in higher-dimensions, on the other
hand, is much more mysterious, with a far greater diversity in the possible behaviors.
This paper is about the conservative setting, in one dimension higher than Denjoy
and Poincaré–Bendixson: area-preserving diffeomorphisms of 2-manifolds and volume-
preserving flows on 3-manifolds.

A first observation is that without further assumptions, there might be no interesting
invariant sets at all:

Example 1.1. Let f be an irrational translation of a two-torus; then, this is area-
preserving, but the only compact invariant set is the entire manifold. One can similarly
consider an irrational volume-preserving flow on the three-torus.

The main theme of our paper is that when one adds some further natural conditions
of a symplectic nature, the situation changes completely. Our inspiration comes from
the following result of Le Calvez-Yoccoz. Recall that an invariant set U of a map or
flow, closed or not, is called minimal if the orbit of each initial condition p P U is dense
in U . A groundbreaking 1997 paper by Le Calvez–Yoccoz [42], improving on an earlier
result of Handel [31], showed that for any homeomorphism of S2 the complement of an
invariant finite set of points is never minimal. Their result resolved the 2-dimensional
case of an old question of Ulam from the Scottish Book [43, p. 208].

Our first results give a generalization of this, in the smooth symplectic setting, to
higher-genus surfaces and 3-manifolds.

Theorem 1. Let Σ be a closed, oriented surface and let φ : Σ Ñ Σ be any monotone
area-preserving diffeomorphism. Then for any proper compact invariant set Λ Ă Σ, the
complement Σ zΛ is not minimal.

Theorem 2. Let Y be a closed, oriented 3-manifold equipped with a co-oriented contact
structure ξ with torsion first Chern class. Let λ be any contact form defining ξ and
let φ “ tφtutPR denote the Reeb flow of λ. Then for any proper compact invariant set
Λ Ă Y , the complement Y zΛ is not minimal.

What is novel about these theorems in the context of conservative dynamics is the
level of generality. The simplest kinds of compact invariant sets are periodic orbits:
this means that the invariant set is homeomorphic to a circle (in the case of flows) or
a finite set of points with a transitive action (in the discrete setting). Previous results
have established theorems like the above under strong dynamical assumptions such
as the existence of only finitely many periodic orbits [29, 9]; we discuss this further in
Remark 1.6. That these theorems hold much more generally, at least in low-dimensions,
seems to us to be a quite new and perhaps unexpected phenomenon.

The assumptions of these theorems also apply to broad classes of systems in Hamil-
tonian dynamics. For example, any Hamiltonian diffeomorphism of a closed symplectic
surface is monotone. As we will see, any geodesic flow on a closed Finsler surface
corresponds to a Reeb flow with torsion first Chern class. Any Reeb flow on a ratio-
nal homology 3-sphere of course also has torsion Chern class, as does any Reeb flow
on a closed 3-manifold with contact structure supporting a contact Anosov flow [32,
Theorem 4.1].
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Theorem 1 and Theorem 2 guarantee the existence of an abundance of compact
invariant sets. Moreover, the compact invariant sets are spread out in the manifold.
For example, we obtain the following corollaries.

Corollary 1.1. Under the assumptions of Theorem 1, the map φ has infinitely many
distinct proper compact invariant sets whose union is dense in Σ.

Corollary 1.2. Under the assumptions of Theorem 2, the Reeb flow has infinitely many
distinct proper compact invariant sets whose union is dense in Y .

Corollary 1.1 and 1.2 are clearly false if one requires the compact invariant sets to
be periodic orbits. For example, an irrational rotation of a two-sphere satisfies the
assumptions of Theorem 1, but has just two periodic points.

Remark 1.3. The generality of the above theorems strongly precludes the space of
possible improvements, without the imposition of additional restrictions. For example,
one could hypothetically ask whether the invariant sets we detect support interesting in-
variant measures. However, Anosov–Katok famously constructed [2] an area-preserving
diffeomorphism of S2 whose invariant measures are as simple as possible: the only er-
godic invariant measures are a pair of fixed points and the area measure. Corollary 1.1
applies to the Anosov–Katok example to produce many distinct proper compact in-
variant sets, but they all must therefore support essentially the same ergodic invariant
measures.

Remark 1.4. The novelty of Theorems 1 and 2 is that they make no genericity as-
sumptions at all. Indeed, prior results on the closing lemma (see [40, 3, 19, 22]) show
that a C8-generic system of the type we consider has a dense set of periodic points.

Remark 1.5. The arguments in Le Calvez - Yoccoz are local in nature, and produce
for example invariant sets near any irrationally elliptic fixed point; see for example the
exposition in [9]. As we will see, the invariant sets we detect arise from fundamentally
different considerations: roughly speaking, they produce invariant sets near any proper
compact invariant set containing all periodic orbits, hence have a global character.

1.2. Geodesic flows on surfaces. In the setting of Riemannian or Finsler manifolds,
it is natural to ask how much of the manifold is visited by a given geodesic. Perhaps
the simplest dichotomy in this direction is between the dense and non-dense geodesics.
At one extreme, one could imagine that every geodesic is dense; this can not occur,
because a closed geodesic can not be dense, but it is natural to wonder how far off it is
from the actual behavior. In fact, for surfaces we have the following result contrasting
this sharply:

Theorem 3. Let F be any closed Finsler surface. Then there exists an infinite collection
G of geodesics such that

(a) γpRq is not dense in F for any γ P G;
(b) The union

Ť

γPG γpRq is dense in F ;

(c) The closures γpRq and γ1pRq are distinct for any pair of distinct elements γ, γ1 P
G.
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In other words, a dense set of points have a non-dense geodesic going through them;
and, moreover, these geodesics all visit different sections of the surface.

In the negative curvature case, or the generic case, the above theorem is well-known,
since in fact the stronger statement holds that the closed geodesics are dense. However,
we make no curvature assumption at all, and in this generality this property seems to
be quite new. Moreover, the theorem is false if one requires the geodesics to param-
eterize closed loops. For example, there exist Finsler metrics on S2 with exactly two
geometrically distinct closed geodesics [2].

In a different direction, our methods also give a new proof of an important recent
result of Contreras–Mazzucchelli [12], giving conditions for a geodesic flow to be Anosov.
We discuss this further in §1.6.1 below.

1.3. The work of Franks and Salazar. In fact, Theorem 1 and Theorem 2 follow
from slightly more general (but slightly harder to state) results, which we now explain.
This level of generality is also important for the applications to geodesic flows above.

Shortly after the work by Le Calvez–Yoccoz, Franks discovered the following refine-
ment of their theorem. Recall that a compact invariant set Λ of a homeomorphism or
flow on a compact manifold is called locally maximal if any sufficiently C0-close com-
pact invariant set must be contained in Λ. If a compact invariant set Λ is not locally
maximal, then any neighborhood U of Λ contains a point z R U zΛ with orbit closure
contained in U . Franks [26] showed that for any homeomorphism of S2, the union of
periodic points is either infinite or not locally maximal. A subsequent refinement in
the conservative case by Salazar [49] showed that for any area-preserving homeomor-
phism of S2 and any compact invariant set Λ Ď S2 containing all periodic points, either
Λ “ S2 or Λ is not locally maximal. We are able to generalize these results in the
smooth symplectic case as well:

Theorem 4. Let Σ be a closed, oriented surface and let φ : Σ Ñ Σ be any monotone
area-preserving diffeomorphism. Then for any compact invariant set Λ Ď Σ containing
all periodic orbits of φ, either Λ “ Σ or Λ is not locally maximal.

Theorem 5. Let Y be a closed, oriented 3-manifold equipped with a co-oriented contact
structure ξ with torsion first Chern class. Let λ be any contact form defining ξ and
let tφtutPR denote the Reeb flow of λ. Then for any compaact invariant set Λ Ď Y
containing all periodic orbits of tφtutPR, either Λ “ Y or Λ is not locally maximal.

As we will explain, Theorem 4 implies Theorem 1. The analogous chain of reasoning
holds starting from Theorem 5.

Remark 1.6. Related results for Hamiltonian diffeomorphisms of CPn with finitely
many periodic points and dynamically convex Reeb flows on S2n`1 with finitely many
closed orbits were respectively proved by Ginzburg–Gürel [29] and Cineli–Ginzburg–
Gürel–Mazzucchelli [9]. There is no dimensional restriction in these results, and we say
a bit more about this in connection to our results in §1.6.4.

Remark 1.7. Le Calvez–Yoccoz, Franks, and Salazar used very different methods from
ours. Le Calvez–Yoccoz and Franks argue by contradiction with the key technical step
that after possibly iterating the map, the Lefschetz index of the fixed point set is ď 0,
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contradicting the condition that χpS2q ą 0; Salazar’s argument also uses this. Since
any oriented surface of higher genus does not have positive Euler characteristic, we
do not know how to approach Theorem 4 using their methods; the case of flows on
three-manifolds via their methods is also unclear to us.

Remark 1.8. Our proof of Theorem 3, after making minor modifications, yields a
geodesic flow analogue of Franks’ theorem: either the union of closed geodesics is dense
in F or we can find non-dense geodesics which are arbitrarily nearby its closure.

1.4. Invariant sets from low-action holomorphic curves. We now explain a gen-
eral theorem that we prove, applicable in any dimension and of independent interest,
for extracting invariant sets; it is used to prove all of the above dynamical results. One
can view this as a global detection method via “low-action” holomorphic curves.

1.4.1. The setup. We work in the general setting of punctured holomorphic curves in
symplectizations RˆY over framed Hamiltonian manifolds. A framed Hamiltonian
structure on a smooth, oriented manifold Y of dimension 2n`1 ě 3 is a pair η “ pλ, ωq
of a 1-form λ and a closed 2-form ω such that λ^ωn ą 0. The Hamiltonian vector field
Rη is defined implicitly by

λpRηq ” 1, ωpRη,´q ” 0.

The flow of Rη preserves ω and the volume form λ^ωn. This setup is an abstraction of
many important classes of systems in symplectic and conservative dynamics, including
mapping torii of symplectic diffeomorphisms, Reeb and stable Hamiltonian flows, and
volume-preserving flows on three-manifolds. For example, if ω “ dλ, then λ is a contact
form and Rη is its Reeb vector field.

We follow the classical setup of holomorphic curve theory in symplectizations intro-
duced by Hofer. Fix a Riemann surface pC, jq. A J-holomorphic curve is a proper
smooth map u : C Ñ RˆY satisfying the Cauchy–Riemann equation

J ˝Du “ Du ˝ j

where J is an η-adapted almost-complex structure on RˆY . This is a translation-
invariant almost-complex structure restricting to a compatible almost-complex struc-
ture on the symplectic bundle pkerpλq, ωq and sending ´Rη to the vector field Ba defined
by the R-coordinate on RˆY . We say u is standard if the domain C is homeomorphic
to the complement of a finite subset of a closed Riemann surface. The geometry of a
J-holomorphic curve in RˆY is controlled by the action and Hofer energy1, defined
respectively as

Apuq :“

ż

C

u˚ω, Epuq :“ sup
sPR

ż

CXu´1ptsuˆY q

u˚λ.

The action controls how far on average the tangent planes of C, which are J-invariant,
are from the vertical plane spanned by Ba and Rη. Therefore, a low-action holomorphic
curve should approximate the vector field Rη very well. The Hofer energy is, informally,
the maximum length of the level sets of C in RˆY .

1This is not Hofer’s original definition. Finiteness of EpCq, however, is equivalent to finiteness of
the original Hofer energy.
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1.4.2. The limit set. A key object in our method is the “limit set” of a sequence of
holomorphic curves in a symplectization, which we now introduce. For any closed,
smooth, odd-dimensional manifold Y , write DpY q for the space of pairs pη, Jq where η is
a framed Hamiltonian structure and J is an η-adapted almost-complex structure. Equip
it with the topology of C8 convergence in both η and J . Fix a pair pη, Jq P DpY q and
a sequence tpηk, Jkqu in DpY q converging to pη, Jq. Fix a sequence tuk : Ck Ñ RˆY u
where uk is Jk-holomorphic for each k.

It is convenient to define X :“ p´1, 1qˆY , and to define for any s P R the shift map
τs : RˆY Ñ RˆY , mapping pt, yq ÞÑ pt´ s, yq. Define the limit set X of the sequence
tuku to be the collection of all closed subsets K Ď p´1, 1q ˆ Y arising as subsequential
Hausdorff limits as k Ñ 8 of height-2 slices of uk. That is, there exists a sequence tsku
of real numbers such that a subsequence of

τsk ¨
´

ukpCkq X psk ´ 1, sk ` 1q ˆ Y
¯

Ď X

converges in the Hausdorff topology to K. The limit set X is a subset of KpXq, the
space of all closed subsets of X equipped with the topology of Hausdorff convergence.
See § 2.2 for a definition of the Hausdorff topology.

The limit set has the following very important connectivity property:

Proposition 1.9. Fix a closed, smooth, oriented, odd-dimensional manifold Y and fix
a sequence tpηk, Jkqu converging in DpY q to a pair pη, Jq. Let tuk : Ck Ñ Y u denote a
sequence where uk is a standard Jk-holomorphic curve for each k. Then there exists a
subsequence tukju whose limit set X is connected with respect to the Hausdorff topology.

A harder theorem, which we prove, is the following:

Theorem 6. Fix a closed, smooth, oriented, odd-dimensional manifold Y and a se-
quence tpηk, Jkqukě1 converging in DpY q to a pair pη, Jq. Let tuk : Ck Ñ Y ukě1 denote
a sequence where uk is a standard Jk-holomorphic curve for each k and let X Ď KpXq
denote their limit set. Assume in addition that

lim
kÑ8
Apukq “ 0 and inf

k
χpCkq ą ´8

. Then every set Λ P X is equal to p´1, 1q ˆ Λ, where Λ P KpY q is non-empty and
invariant under the flow of the Hamiltonian vector field Rη.

The novelty2 of Theorem 6 is that it extracts invariant sets without requiring that the
Hofer energies tEpukqu admit a finite k-independent upper bound, or even that any of
the Hofer energies Epukq are finite. Bounds on Hofer energy are a standard assumption
in the vast majority of the symplectic field theory literature; the only exceptions known
to us are [24, 47] about “feral” curves3. Our proof of Theorem 6 is inspired by, and
builds on, ideas in these works, though one should emphasize that the setting here, of

2Indeed, in the case where supkě1 Epukq ď E for some finite E, Theorem 6 follows from the original

work of Hofer, and moreover one obtains the stronger conclusion that any Λ P X is a cylinder over a
finite union of periodic orbits.

3Loosely speaking, these are curves with unbounded Hofer energy; they do not play a role in our
arguments.
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a sequence of standard curves with action tending to zero, is quite different. As we will
see in the proof, this leads to new topological challenges, with an essential point being
that the curves we accommodate can have genus and many punctures. Indeed, it is
essential for our arguments to be able to allow such curves.

Remark 1.10. The Euler characteristic χpCkq is finite for each k because we are
assuming each curve is standard. The assumption of a finite k-independent lower bound
on χpCkq is essential for our proof of Theorem 6. Removing this assumption would be
of interest: it would shorten the proofs of our main dynamical Theorems 4 and 5 and
extend them to any rational area-preserving diffeomorphism of a closed surface and any
Reeb flow on a closed 3-manifold, respectively.

Remark 1.11. Fish-Hofer in [24, Definition 4.46] also define a kind of limit set (the “x-
limit set”). Our notion of limit set differs from theirs in several ways which are crucial for
our arguments. In particular, [24, Definition 4.46] has an asymptotic condition, which
we do not want to require for our applications. And, their limit set is a single invariant
set, while ours is a connected family of invariant sets. This distinction is actually a
key innovation, since the connectedness is exploited to show that such families contain
many distinct invariant sets.

1.5. The crossing energy theorem in symplectizations. To explain our final new
result, which is more technical, we need to recall the “crossing energy theorem” for
Hamiltonian diffeomorphisms. The crossing energy theorem is a powerful tool intro-
duced by Ginzburg–Gürel [27]. Recall that a neighborhood U of a locally maximal
compact invariant set Λ of a homeomorphism or flow is isolating if any compact invari-
ant set Λ1 Ă U is a subset of Λ. The crossing energy theorem asserts that if Λ is a locally
maximal invariant set of a Hamiltonian diffeomorphism (for example, a hyperbolic fixed
point), U is an isolating neighborhood, and V Ă U is such that V Ă U , then any “Floer
cylinder” crossing the shell UzV must have a uniform lower bound on its Floer energy.
Analogues have been established for generating functions [1], gradient flow lines of the
energy functional on loop space [30], and Floer cylinders in symplectic homology [9]. It
is central to many results, such as Conley conjecture type results on the multiplicity of
periodic points [4, 27, 28], dynamics of Hamiltonian and Reeb pseudorotations [29, 9],
and the study of topological entropy via barcode invariants [8, 30].

Thus, one would like to generalize it for Reeb flows. This was first posed as a question
in 2012 by Ginzburg–Gürel, but prior to our work it had not been clear how to prove
it; see e.g. the discussion in [30, p. 4]. In fact, Theorem 6, which uses new tools that
did not exist at the time of [27], provides this theorem as a corollary, for any framed
Hamiltonian flow and for holomorphic curves with domain any closed Riemann surface
with finitely many punctures removed. Here is the precise statement:

Theorem 7. Fix a closed framed Hamiltonian manifold pY, ηq and an η-adapted almost-
complex structure J . Let Λ be a locally maximal Rη-invariant set, U an isolating neigh-
borhood and V Ă U such that V Ă U . Fix an integer T ą 0 and let u : C Ñ RˆY
be any standard J-holomorphic curve with χpCq ě ´T . Then there is a constant
c “ cpη, J,Λ, U, V, T q ą 0 such that

Apuq ą c ą 0
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whenever there exists s´, s` P R with

(1) upCq X ts´u ˆ Y Ă V, upCq X ts`u.ˆ Y Ć U.

In analogy with the progress for Hamiltonian diffeomorphisms summarized above,
one hopes that Theorem 7 has many potential applications concerning the dynamics of
Reeb flows.

Remark 1.12. Theorem 7 directly generalizes the crossing energy theorem for Hamil-
tonian diffeomorphisms from [27, 29]. Given a Hamiltonian diffeomorphism φ, the
mapping torus Yφ carries a natural framed Hamiltonian structure η such that Rη gen-
erates the suspension flow. There is an explicit correspondence between Floer cylinders
for a choice of Hamiltonian H generating φ and holomorphic cylinders in RˆYφ4 The
Floer energy of a Floer cylinder is equal to the action of its corresponding holomorphic
cylinder. Thus, it suffices to apply Theorem 7 for Y “ Yφ and pass through this corre-
spondence. On the other hand, there are also very interesting crossing energy theorems
proved in the recent works [9, 10, 45]. The results in [9, 10] are for Floer cylinders in
completed Liouville domains and the results in [45] are for Floer strips with Lagrangian
boundary conditions; these do not similarly follow from Theorem 7.

1.6. Further remarks.

1.6.1. The C2-stability conjecture. A recent breakthrough result by Contreras–Mazzucchelli
[12] established the C2-stability conjecture for geodesic flows on Riemannian surfaces,
namely that the C2-structurally stable flows are exactly the Anosov ones. Our methods
give an alternative proof of the following key ingredient in their proof, giving a sufficient
criterion for a geodesic flow to be Anosov:

Corollary 1.13 ([12, Theorem D]). Let F be a closed Finsler surface, and let P Ď SF
denote the closure of the union of closed orbits of the geodesic flow. Then if i) P
is uniformly hyperbolic and ii) the geodesic flow is Kupka–Smale, the geodesic flow is
Anosov.

It is important to note that Corollary 1.13 is only a special case of [12, Theorem D],
which holds for all Reeb flows on closed 3-manifolds. However, the special case suffices
for the application to the stability conjecture.

1.6.2. Non-rational maps. We note that, in the case of the torus, our results are close to
being sharp. Indeed, any non-rational φ is either i) Hamiltonian isotopic to a translation
px, yq ÞÑ px`a, y`bq where pa, bq R Q2 or ii) Hamiltonian isotopic to a smooth conjugate
of an affine map

px, yq ÞÑ px` ny, y ` bq,

where n is a nonzero integer and b R Q. The examples in case i) have no proper compact
invariant sets when both a and b are irrational and the examples in case ii) never have
any proper compact invariant subsets.

It would be interesting to see whether our results hold for rational maps in higher
genus.

4An explicit derivation for the 2-disk, which generalizes to arbitrary symplectic manifolds, can be
found in [6, Lemma 20].
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1.6.3. Three-dimensional energy surfaces. Density results such as Corollary 1.1 and
Corollary 1.2 also hold for compact regular Hamiltonian hypersurfaces in some sym-
plectic 4-manifolds, including R4, without any contact type condition. This will be
discussed in a future work [46].

1.6.4. Higher dimensions. We close with some speculations on the extension of our
results to higher dimensions. As we mentioned in Remark 1.6, higher-dimensional
versions of the theorems in this paper were proved in [29, 9], but with the dynamical
assumption that the systems must have finitely many periodic orbits.

It would be very interesting to find the weakest possible dynamical assumptions for
which our theorems extend to higher-dimensional Hamiltonian diffeomorphisms and
Reeb flows. Our Theorem 6 on the extraction of invariant sets from low-action holo-
morphic curves with bounded topology works in all dimensions, and as mentioned in
Remark 1.12, implies a “crossing energy bound” which is a key technical ingredient
(among many) in [29]. Proposition 1.9 also clearly works in any dimension. How-
ever, our existence results for low-action holomorphic curves rely on deep properties
of ECH/PFH, which are invariants defined for area-preserving surface diffeomorphisms
and three-dimensional Reeb flows, respectively.

Finding low-action holomorphic curves with bounded topology in higher dimensions
in high generality seems like it will require substantial new ideas. This is consistent
with a more general theme in a range of problems in current symplectic research —
ranging from the kind of questions considered in this paper to problems about the alge-
braic structure of certain homeomorphism groups to questions like symplectic packing
stability [14, 13] — where one would like analogues of various properties related to
ECH/PFH in higher dimensions.

On a more optimistic note, the fact that Theorem 6 works for non-cylindrical curves
is an asset. It opens up for the first time the possibility of using powerful theories such
as contact homology or SFT, which count non-cylindrical curves, to explore invariant
sets of higher-dimensional Reeb flows. Indeed, as we have seen here, one needs to
consider non-cylindrical curves in our arguments to get our results.

1.7. Outline of article. § 2 proves Theorems 4, 5, and 7. The proofs of Theorems 4
and 5 require Theorem 6 and two propositions (Propositions 2.2 and 2.3). These re-
spectively assert that monotone area-preserving maps and Reeb flows of torsion contact
forms have many low-action holomorphic curves with controlled topology. § 3 proves
Proposition 2.3 using embedded contact homology. § 4 proves Proposition 2.2 using
periodic Floer homology. § 5 proves Theorem 6.
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2. Proofs of main dynamical results

This section is primarily concerned with the proofs of Theorems 4 and 5. The proofs
we give here rely on Theorem 6 and two propositions (Propositions 2.2 and 2.3), whose
proofs are all deferred to subsequent sections. After these results are proved, we explain
how they imply the other dynamical theorems stated in the introduction. We conclude
the section with a proof of Theorem 7, which is a straightforward corollary of Theorem 6.

Before proceeding, let us explain the basic ideas behind the proofs. Proposition 2.3
asserts that any nondegenerate torsion contact form on a closed 3-manifold Y admits
sequences of holomorphic curves in RˆY with uniformly bounded topology, finite Hofer
energy, and arbitrarily low action. Moreover, the curves in the sequence can be taken
to pass through any point p0, zq in RˆY that is not on any closed Reeb orbit. The low
action and bounded topology produce, via Theorem 6 and Proposition 1.9, a connected
family X of compact invariant sets. The finite Hofer energy and point constraints are
then exploited, via an elementary topological argument, to conclude Theorem 5. The
theorem is proved for degenerate contact forms by approximating them by nondegen-
erate contact forms and using the resulting holomorphic curves; to make this work, we
require a certain amount of quantitative control over the relevant curves, which is why
Proposition 2.3 is quantitative in nature. The path from Proposition 2.2 to Theorem 4
is completely analogous.

Remark 2.1. Our style of argument is robust enough to generalize to other settings
where low action holomorphic curves with bounded topology are present. For example,
it follows from [29] that the mapping torus of any Hamiltonian pseudorotation of CPn
admits holomorphic cylinders of arbitrarily low action, with finite Hofer energy, passing
through any point in the symplectization. Applying our argument proves the analogue
of Theorems 4 and 5 for these maps.

2.1. Existence of low-action holomorphic curves with bounded topology. The
following two key propositions show that mapping torii of monotone area-preserving
surface diffeomorphisms and Reeb flows of torsion 3-dimensional contact forms have,
after possibly making small perturbations, many low-action holomorphic curves with
bounded topology. We start with the statement for area-preserving surface diffeomor-
phisms. Relevant notations and definitions are found in Section 4.

Proposition 2.2. Let φ be a monotone area-preserving diffeomorphism of a closed
symplectic surface pΣ, ωq. Let Yφ denote the mapping torus of φ. There exists a positive
integer d0 ě 1, depending only on the Hamiltonian isotopy class of φ, such that the
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following holds for all d ě d0 and any nondegenerate Hamiltonian perturbation φ1 of φ:
For any fixed z1 P Y 1φ, not on any closed Reeb orbit, and generic choice of φ1-adapted
J 1, there exists a standard J 1-holomorphic curve u : C Ñ RˆYφ1 such that:

(a) p0, z1q P upCq;
(b) Epuq ď d;
(c) Apuq ď d´1{2;
(d) χpCq ě ´2.

Next, the statement for Reeb flows. Relevant notations and definitions are found in
Section 3.

Proposition 2.3. Let λ be a torsion contact form on a closed 3-manifold Y . Then there
exists a positive integer k0 ě 0 such that the following holds for any k ě k0 and any
C8-small nondegenerate perturbation λ1 of λ: For any fixed z1 P Y , not on any closed
Reeb orbit, and generic choice of λ1-adapted J 1, there exists a standard J 1-holomorphic
curve u : C Ñ RˆY such that:

(a) p0, z1q P upCq;
(b) Epuq ď k3{4;
(c) Apuq ď k´1{16;
(d) χpCq ě ´2.

Remark 2.4. In fact, we will see in the proofs of Proposition 2.2 and Proposition 2.3
that not only does there exist curves with the above properties, but that the ECH/PFH
curves satisfy these properties under the assumptions of the proposition with probability
1. More precisely, as we will explain later, for k (resp. d) as in the statement of the
propositions, the non-triviality of the “U”-map implies the existence of approximately
k (resp. d) curves, and we can look at the proportion that satisfy the conclusions of
the propositions. Our arguments imply that this number limits to 1.

2.2. The Hausdorff topology. Let Z denote any separable and locally compact met-
ric space (e.g. any second countable topological manifold). Recall that KpZq denotes
the space of all closed subsets of Z, equipped with the topology of Hausdorff conver-
gence. We collect some basic facts about the Hausdorff topology here.

2.2.1. Hausdorff convergence. Fix any sequence tΛku in KpZq. We define lim inf Λk P

KpZq to be the set of z P Z such that each neighborhood of z intersects all but finitely
many of the Λk. We define lim sup Λk P KpZq to be the set of z P Z such that each
neighborhood of z intersects infinitely many of the Λk. It is clear that lim inf Λk Ď

lim sup Λk. Then Λk Ñ Λ in the Hausdorff topology if and only if lim inf Λk “ Λ “

lim sup Λk. We recall [44, Corollary 2.2] that, under the imposed conditions on Z, the
space KpZq is compact and metrizable.

2.2.2. Continuity lemmas. The following lemmas are about continuity properties of
maps between KpZq’s. They are elementary and we omit the proofs. The first lemma
asserts that taking a union with a closed set is continuous.

Lemma 2.5. Let Z be a separable and locally compact metric space. For any Λ1 P KpZq,
the map Λ ÞÑ ΛY Λ1 is a continuous map from KpZq to itself.
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On the other hand, taking an intersection with a closed set is usually not continuous.
The next lemma asserts that it is continuous in a rather specific situation.

Lemma 2.6. Let Y be any separable and locally compact metric space and set X :“
p´1, 1q ˆ Y , equipped with the product metric. Then for any sequence tΛku in KpY q
such that

p´1, 1q ˆ Λk Ñ p´1, 1q ˆ Λ P KpXq,
we have Λk Ñ Λ.

The last lemma asserts that, when Z1 is a compact metric space, pushing forward a
closed set by a continuous map f : Z1 Ñ Z2 is Hausdorff continuous.

Lemma 2.7. Let f : Z1 Ñ Z2 be a continuous map where Z1 is a compact metric
space and Z2 is a separable and locally compact metric space. Then the map Λ ÞÑ fpΛq
defines a Hausdorff continuous map KpZ1q Ñ KpZ2q.

2.2.3. Invariant sets of flows. Suppose that Z is a smooth and compact manifold and
let R denote a vector field on Z. Let KpZ,Rq Ď KpZq denote the subspace of all closed
subsets invariant under the flow of R. This subspace is closed and therefore compact,
but it may not be connected. The following lemma states and proves an important
property of locally maximal Λ P KpY,Rq.

Lemma 2.8. If an element Λ P KpZ,Rq is locally maximal, then it is maximal with
respect to inclusion in any connected subspace Z Ď KpZ,Rq containing Λ.

Proof. Conley proved [11, Theorem 3.5] that Λ is locally maximal if and only if it is
maximal with respect to inclusion in some open and closed subspace Z 1 Ď KpZ,Rq.
Any connected subspace Z such that Λ P Z must be contained in Z 1 and the lemma
follows. �

2.3. Proofs of Theorem 4 and Theorem 5. In this section, we prove Theorems 4
and Theorem 5. The proofs are virtually identical, so for brevity we will only give the
proof of Theorem 4.

The main ingredients in the proof of Theorem 4 are Theorem 6, Proposition 2.2, and
Proposition 1.9. Choose any monotone area-preserving diffeomorphism φ of a closed
symplectic surface pΣ, ωq. Let Yφ denote its mapping torus and η “ pdt, ωφq denote
its associated framed Hamiltonian structure. We observe that Theorem 4 follows from
proving its analogue in the mapping torus:

Proposition 2.9. For any closed Rη-invariant set Λ Ď Yφ containing all periodic orbits
of Rη, either Λ “ Yφ or Λ is not locally maximal.

Proof of Proposition 2.9. Let Λ Ď Yφ be any compact invariant set. We assume without
loss of generality that it is proper, since if Λ “ Yφ we are already done. Our argument
will go via approximation to the nondegenerate case, so choose a sequence tHku of
smooth functions Hk : R {ZˆΣ Ñ R converging in C8 to 0 such that for each k, the
map φk :“ φ ˝ψ1

Hk
is nondegenerate. For each k, the pair ηk :“ pdt, ωφ ` dHk ^ dtq is a

framed Hamiltonian structure, and the map

pt, pq ÞÑ pt, pψtHk
q
´1
ppqq
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descends to an isomorphism

pYφ, ηkq Ñ pYφk , pdt, ωφkqq

of framed Hamiltonian manifolds. Since Hk converges to 0 in the C8 topology as
k Ñ 8, we have that ηk converges in C8 to η as k Ñ 8. For each k we choose an
ηk-adapted Jk such that the sequence tpηk, Jkqu converges to a pair pη, Jq in DpY q.

Now fix any point z P Yφ not in Λ. Then there is a sequence of points tzku converging
to z, such that zk is not on any closed Reeb orbit for φk; this follows from the fact that
the φk are nondegenerate, hence the union of their closed Reeb orbits has measure zero.
By Proposition 2.2, after possibly making an arbitrarily small perturbation to each Jk,
for each sufficiently large d and each sufficiently large k there exists a Jk-holomorphic
curve

ud,k : Cd,k Ñ RˆYφ
such that:

(i) p0, zkq P ud,kpCd,kq;
(ii) Epud,kq ď d;
(iii) Apud,kq ď d´1{2;
(iv) χpCd,kq ě ´2.

Write P Ď Yφ for the union of closed orbits of Rη and write P for its closure. For
each d and k, write Pdpkq for the union of closed orbits of Rηk of period at most d. By
the Hofer energy bound in (ii), we have that the level sets concentrate around closed
orbits of period ď d as s Ñ 8. We also note that since Rηk Ñ Rη, we have for each
fixed d that

lim sup
kÑ8

Pdpkq Ď P ,

that is periodic orbits of Rηk with bounded period converge to periodic orbits of Rη. It
follows that for each d, we can choose some large kd " 1 and some sd P R such that

(2) lim sup
dÑ8

τsd ¨
´

ud,kdpCd,kdq X psd ´ 1, sd ` 1q ˆ Yφ

¯

Ď p´1, 1q ˆ P .

Write X :“ p´1, 1q ˆ Yφ and write X Ď KpXq for the limit set of the sequence
tud,kdudě1; by passing to a subsequence, we can assume by Proposition 1.9 that this
is connected. Let f : KpXq Ñ KpYφq denote the map Λ ÞÑ Λ X t0u ˆ Yφ and write
Y :“ fpX q. By Lemma 2.6, the map f is continuous at each point of X , so it follows
that Y is a connected subset of KpY q.

By (iii), (iv), and Theorem 6, we have that Y Ď KpYφ, Rηq. By (2), some Λ1 P Y is
contained entirely in P , and is therefore contained in Λ. By (i), some Λ2 P Y contains
the point z. Now let Z Ă KpYφ, Rηq denote the collection of closed invariant sets equal
to a union K Y Λ for some K P X . By Lemma 2.5, Z is the image of a connected
set by a continuous map, so it is connected. Moreover, Λ P Z, since Λ “ Λ1 Y Λ, and
Λ2 Y Λ P Z by definition. However, Λ2 Y Λ is not a subset of Λ, since it contains z.
Hence, by Lemma 2.8, Λ is not locally maximal.

�

2.4. Proofs of other dynamical results.
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2.4.1. Proofs of Theorems 1 and 2. We prove Theorem 1 using Theorem 4. Theorem 2,
the version for three-dimensional Reeb flows, follows from the same formal argument
using Theorem 5, and so its proof will be skipped for brevity.

Proof of Theorem 1. Let φ : Σ Ñ Σ be a monotone area-preserving diffeomorphism of
a closed surface and let Λ Ă Σ be a proper closed invariant set. Set U :“ Σ zΛ. Let
P Ď Σ denote the union of all periodic orbits. If P Ę Λ, then there exists a periodic
orbit contained in U . Therefore, U is not minimal. If P Ď Λ, then by Theorem 4 there
exists some proper closed invariant subset Λ1 arbitrarily C0-close to Λ but not equal to
Λ. By taking Λ1 sufficiently close to Λ, we can ensure that Λ1 X U is not equal to U .
Then any point z P Λ1 X U will not have dense orbit in U , so U is not minimal. �

2.4.2. Proofs of Corollaries 1.1 and 1.2. We prove Corollary 1.1; the same formal ar-
gument proves Corollary 1.2.

Proof of Corollary 1.1. Let φ : Σ Ñ Σ be a diffeomorphism satisfying the assumptions
of Theorem 1. The corollary is equivalent to the statement that there exists infinitely
many proper compact Rφ-invariant subsets whose union is dense in the mapping torus
Yφ. Let K1 :“ KpYφ, Rφq z tYφu denote the set of all proper compact Rφ-invariant sets.
The set K1 admits a natural partial order defined by inclusion. By Theorem 1, K1 has
no maximal element. The set K1 is non-empty since φ has at least one periodic orbit
(see Proposition 4.1). The set K1 is infinite, since otherwise it would have a maximal
element. Now consider the set

Z :“
ď

ΛPK1
Λ Ď Yφ,

the closure of the union of all proper compact invariant sets. The set Z is compact,
invariant, and contains all proper compact invariant sets. Since K1 has no maximal
element, Z must be equal to Yφ. �

2.4.3. Proof of Theorem 3.

Proof. Fix a closed Finsler surface F as in the statement of the theorem. Now we
introduce the notion of a “projected invariant set” of the geodesic flow, which will
be useful for our proof. Recall that there is a Reeb vector field whose orbits project
to geodesics. We write SF for the unit tangent bundle and R for this vector field.
Let π : SF Ñ F denote the bundle projection. We call a compact subset Ξ Ď F a
projected invariant set if there exists some compact R-invariant subset Λ Ď SF such
that πpΛq “ Ξ. A projected invariant set Ξ is called proper if Ξ ‰ F . The standard

example of a projected invariant set is the closure γpRq of some geodesic γ. We use
Theorem 5 to prove the following analogue of Corollaries 1.1 and 1.2.

Lemma 2.10. There exists infinitely many distinct proper projected invariant sets
whose union is dense in F .

Proof. Let Ξ Ď F be any proper projected invariant set. We claim that there exists a
proper projected invariant set Ξ1 such that Ξ is a strict subset of Ξ1. Once this claim
is established, an analogous argument to the proof of Corollary 1.1 proves the lemma.
We omit this part and focus on proving the claim.
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Fix a proper projected invariant set Ξ as above. We construct the set Ξ1 in two cases,
depending on whether Ξ contains all of the closed geodesics or not. First, suppose that
there exists a closed geodesic γ : RÑ F such that γpRq is not a subset of Ξ. Then, we
set Ξ1 “ ΞY γpRq.

Next, suppose that Ξ contains the images of all closed geodesics. Let Λ Ă SF de-
note the closure of the union of all compact invariant sets projecting into Ξ; note that
πpΛq “ Ξ. Since Ξ contains the images of all closed geodesics, it follows from the con-
struction that Λ must contain all closed orbits of the geodesic flow. By Theorem 5 and
Lemma A.4, Λ is not locally maximal. Therefore, there exists a Hausdorff convergent
sequence Λk Ñ Λ such that Λk is not a subset of Λ for each k. We can assume without
loss of generality that Λ is a strict subset of Λk for each k. This is done by replacing
Λk with Λk Y Λ for each k; these sets still Hausdorff converge to Λ by Lemma 2.5. By
the definition of Λ, it follows that Ξ is a strict subset of πpΛkq for each k. Moreover, it
follows from Lemma 2.7 that πpΛkq Ñ Ξ, so πpΛkq is a proper projected invariant set
for sufficiently large k. We set Ξ1 “ πpΛkq for any choice of sufficiently large k. �

We now discuss how to prove Theorem 3 using the lemma. By Lemma 2.10, there
exists an infinite collection F Ď KpF q of projected proper invariant sets whose union
is dense in F . For any proper projected invariant set Ξ Ă F and any point z P F ,
there exists a geodesic γ : R Ñ F such that γp0q “ z and γpRq Ď Ξ. Hence, for each
Ξ P F , we obtain a countable sequence of geodesics γΞ

k , such that i) γΞ
k pRq Ă Ξ for

each k and ii) Ykγ
Ξ
k pRq is dense in Ξ. After passing to a subset, we may assume that

these geodesics have distinct closures. Let G be the collection of all geodesics γΞ
k over

all Ξ P F and all k. Then G is infinite, because F is, and satisfies Theorem 3(a–c).
�

2.4.4. Proof of Corollary 1.13.

Proof. Contreras–Mazzucchelli proved [12, Section 3.4, p. 18] that, given conditions i)
and ii), the invariant set P is locally maximal. Their argument is short and we para-
phrase it here for the convenience of the reader. A uniformly hyperbolic invariant is
locally maximal if and only if it has “local product structure” [25, Theorem 6.2.7]. By
the definition of local product structure [12, Section 3.2], the set P has local product
structure if and only if for any pair of sufficiently close periodic orbits γ1 and γ2, the
local stable/unstable manifolds intersect in P . The existence of a non-empty transverse
intersection follows from Condition ii) and the fact that γ1 and γ2 are close. To prove
that the intersection is contained in P , Contreras–Mazzucchelli observe that if γ1 and
γ2 are close then they are in the same homoclinic class. By the Birkhoff–Smale horse-
shoe theorem [25, Theorem 6.5.2], it follows that any intersection of stable/unstable
manifolds is approximated by periodic orbits.

Now, the corollary follows immediately from our main Theorem 5. Since P is locally
maximal, Theorem 5 and Lemma A.4 imply that P “ SF . By i), we have that SF is
uniformly hyperbolic, and therefore that the geodesic flow is Anosov. �

2.5. Proof of crossing energy theorem. We prove Theorem 7 using Theorem 6,
Proposition 1.9, and the lemmas from this section.
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Proof of Theorem 7. Assume for the sake of contradiction that the corollary is false.
Then there exists a sequence of J-holomorphic curves tuk : Ck Ñ RˆY u satisfying
(1), χpCkq ě ´T and Apukq ď 1{k. By Theorem 6, every element of the limit set X
is a cylinder over a closed invariant set. By Proposition 1.9, after replacing tuku with
a subsequence if necessary, the limit set is connected. Let f : KpXq Ñ KpY q denote
the map Λ ÞÑ Λ X t0u ˆ Y and set Y :“ fpX q. By Lemma 2.6 and Theorem 6, Y is a
connected subspace of KpY,Rηq.

Let Z Ď KpY q denote the collection of closed invariant sets which are a union K YΛ
for some K P Y ; this is connected by Lemma 2.5. The first item in (1) implies Y
contains an invariant set Λ1 contained in U , and since U is an isolating neighborhood of
Λ, this implies Λ1 Ď Λ. It follows that Λ P Z. Since Λ is locally maximal, every element
of Z is a subset of Λ by Lemma 2.8. Hence, every element of Y is a subset of Λ. This
in turn implies that for sufficiently large k, every level set of ukpCkq lies inside RˆV .
We now arrive at a contradiction by appealing to the second condition of (1). �

3. Low-action curves from embedded contact homology

This section proves Proposition 2.3. Previously statements like this have been proved
under the assumption of two periodic Reeb orbits [39], or later under the assumption
of finitely many periodic Reeb orbits [16]; this section shows that this phenomenon in
fact holds much more generally.

The basic strategy of proof follows the strategy developed in [39, 16], whereby one
considers a tower of U -curves and compares the ECH index I to the J0 index, which
controls the topology of the curves — we will review these terms below. What is new
here is the argument to bound the difference between I and J0: this is controlled by the
Chern class and the Conley-Zehnder index, and some new ideas are needed to bound
these terms without assuming finitely many orbits.

3.1. Embedded contact homology. We review the basic features of embedded con-
tact homology [33, 35] here. Fix a closed, smooth, connected, oriented three-manifold
Y and a contact structure ξ.

3.1.1. Reeb flow basics. Fix any contact form λ defining ξ, i.e. satisfying the identity
kerpλq “ ξ. Recall that the Reeb vector field R is the unique vector field solving the
equations

λpRq ” 1, dλpR,´q ” 0.

A closed Reeb orbit is a smooth map γ : R {T Z Ñ Y for some T ą 0 such that
9γptq “ Rpγptqq for all t; as is standard we will make no distinction between two closed
Reeb orbits that agree up to a reparameterization of the domain. A closed Reeb orbit
is simple if γ is injective. For any closed Reeb orbit γ, we write γk : R {kT Z Ñ Y for
its k-th iteration. The number T is the action of γ, denoted by

Apγq :“

ż

γ

λ “ T.

The time T linearized flow of R determines a symplectic isomorphism ξγp0q Ñ ξγp0q
called the Poincaré return map. The orbit γ is nondegenerate if the return map does
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not have an eigenvalue equal to 1. A nondegenerate orbit γ is hyperbolic if Pγ has
real eigenvalues and elliptic if Pγ has complex eigenvalues of unit length. We say λ
is nondegenerate if all closed Reeb orbits are nondegenerate. For any fixed contact
structure ξ, a generic defining contact form λ is nondegenerate.

3.1.2. ECH generators. A Reeb orbit set is a (possibly empty) finite set α “ tpαi,miqu

of pairs pαi,miq, where αi is a simple closed Reeb orbit and mi P N is a positive integer
multiplicity. An ECH generator is a Reeb orbit set α “ tpαi,miqu such that i) each of
the αi are pairwise distinct and ii) mi “ 1 if αi is hyperbolic. Denote by ECCpY, λq the
Z {2-vector space generated by the set of ECH generators. Any Reeb orbit set α has a
homology class rαs :“

ř

imirαis P H1pY ;Zq. For each Γ P H1pY ;Zq, let ECCpY, λ,Γq
denote the sub-module generated by ECH generators homologous to Γ.

3.1.3. ECH differential. Assume that λ is nondegenerate. Choose a generic λ-adapted
almost-complex structure J on RˆY . The ECH differential

BJ : ECCpY, λq Ñ ECCpY, λq

is defined by counting certain “J-holomorphic currents” which we now define. We say
that a J-holomorphic curve u : C Ñ RˆY is somewhere injective if there exists ζ P C
such that u´1pupζqq “ tζu and Du is injective at ζ. A J-holomorphic current is a
finite set C “ tpCk, dkqu of pairs where the Ck denote distinct standard, somewhere
injective J-holomorphic curves with finite Hofer energy, and the dk are positive integer
multiplicities. We say that C is somewhere injective if dk “ 1 for each k and embedded
if the Ck are pairwise disjoint and embedded. For any J-holomorphic current C “
tpCk, dkqu, the slices

CXtsu ˆ Y “ tpCk X tsu ˆ Y, dkqu
form for |s| " 1 a weighted collection of embedded loops in Y . The slices converge as
1-dimensional currents to Reeb orbit sets α and β as sÑ 8 and sÑ ´8, respectively.
For any pair of Reeb orbit sets α and β with rαs “ rβs, we let Mpα, βq denote the
moduli space of J-holomorphic curves with positive asymptotic limit at α and negative
asymptotic limit at β.

Any C P Mpα, βq has an associated ECH index IpCq P Z, defined below, and for
each k P Z we let Mkpα, βq denote the subspace of curves of ECH index k. When J
is sufficiently generic, the space M1pα, βq is a smooth 1-dimensional manifold. More-
over, it has a free R-action given by the translation action on RˆY , and the quotient
M1pα, βq{R is a finite set of points. The matrix coefficient of the ECH differential with
respect to a pair of ECH generators α and β is defined by the identity

xBJα, βy :“ #2Mpα, βq{R
where #2 denotes the modulo 2 count of points. By [37, 38], B2

J “ 0, and therefore
pECCpY, λq, BJq is a chain complex. The embedded contact homology ECHpY, ξq is its
homology group. A consequence of Taubes’ isomorphism of ECH with monopole Floer
homology [51] is that ECHpY, ξq does not depend on the choice of contact form λ
defining ξ or the choice of J used to define the ECH differential. The ECH differential
preserves the homology class rαs P H1pY ;Zq of an orbit set α; for any Γ P H1pY ;Zq we
write ECHpY, ξ,Γq for the homology of pECCpY, λ,Γq, BJq.
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3.1.4. The U-map. For a generic choice of λ-adapted almost-complex structure J and
any point z P Y not on any closed Reeb orbit, there exists a chain map

UJ,z : ECCpY, λ,Γq Ñ ECCpY, λ,Γq

defined as follows. Write M2pα, β; zq for the space of all J-holomorphic currents with
ECH index 2 whose support contains p0, zq P RˆY . For a generic choice of J and any
z not on any closed Reeb orbit, the space M2pα, β; zq is a finite set of points. The
matrix coefficient of UJ,z with respect to α and β is defined by the identity

xUJ,zα, βy “ #2Mpα, β; zq.

The map UJ,z descends to a map on homology that we call the U-map:

U : ECHpY, ξ,Γq Ñ ECHpY, ξ,Γq.

The map UJ,z may vary with different choices of J and z. However, the chain homotopy
class of UJ,z does not depend on the choice of J and z, so the induced map on homology
does not depend on the choice of J and z.

3.1.5. U-towers and the volume property. Fix any Γ P H1pY ;Zq. A U-tower is a se-
quence of nonzero classes

tσkukě0 Ă ECHpY, ξ,Γq

such that i) Uσk “ σk´1 for each k ą 0 and ii) Uσ0 “ 0. Taubes’ isomorphism [51]
and a computation by Kronheimer–Mrowka [41, Chapter 35] prove that ECHpY, ξ,Γq
contains a U -tower whenever the class c1pξq`2 PDpΓq P H2pY ;Zq is torsion. Here c1pξq
denotes the first Chern class of ξ with respect to any complex structure which rotates
positively with respect to dλ.

For any nonzero class σ P ECHpY, ξq, define its spectral invariant cσpλq P R to be the
infimum of all L such that σ is represented by a cycle in ECCpY, λq with all constituent
generators having action ď L. Here the action of an ECH generator α “ tpαi,miqu is
defined to be

Apαq :“
ÿ

i

miApαq.

A quantitative version of the proof that ECH is independent of the choice of J used to
define the ECH differential shows that the spectral invariants do not depend on J either.
However, the spectral invariants can and usually do vary with λ. Each spectral invariant
cσpλq is C0-continuous with respect to λ; this allows us to extend the definition of cσpλq
to degenerate λ. The following lemma records some relevant chain-level information
that we can extract from a U -tower.

Lemma 3.1. Assume that there exists a U-tower tσkukě0 Ă ECHpY, ξ,Γq for some
Γ P H1pY ;Zq. Assume that λ is nondegenerate and choose generic J , and p0, zq not
on any closed Reeb orbit, so that the ECH differential BJ and the chain map UJ,z are
well-defined. Then for each ε ą 0 and each k ě 1, there exists an ECH generator αk
such that

(a) Apαkq ď cσkpλq;
(b) Uk

J,zpαkq ‰ 0.
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Proof. For any fixed ε ą 0 and k, there exists a cycle x P ECCpY, λ,Γq representing σk
which splits as a sum of ECH generators x “

řN
i“1 xi with action less than cσkpλq ` ε.

Since there are only finitely many Reeb orbit sets of action ď cσkpλq ` 1, as λ is
nondegenerate, we can therefore find a cycle x as above with action exactly cσkpλq.
Since Uk

j,zpxq ‰ 0, it follows that Uk
J,zpxiq ‰ 0 for some i. Set αk :“ xi. �

One of the most powerful properties of the ECH spectral invariants is the volume
property proved by Cristofaro-Gardiner–Hutchings–Ramos [17]. Their result, stated in
the following proposition, shows that that the spectral invariants of a U -tower asymp-
totically recover the contact volume.

Theorem 8 (ECH volume property, [17]). Assume that there exists a U-tower tσkukě0 Ă

ECHpY, ξ,Γq for some Γ P H1pY ;Zq. Then for any contact form λ we have

(3) lim
kÑ8

cσkpλq
2
{2k “

ż

Y

λ^ dλ.

3.1.6. The ECH index. We now give the previously deferred definition of the ECH
index. Fix a nondegenerate contact form λ and a pair of ECH generators α “ tpαi,miqu

and β “ tpβj, njqu. Let H2pY, α, βq denote the space of equivalence classes of integral
2-chains with boundary α´ β, where two such chains are equivalent if and only if they
differ by a 2-boundary. The ECH index of a class Z P H2pY, α, βq is an integer defined
by the formula

(4) IpZq :“ cτ pZq `Qτ pZq `
ÿ

i

mi
ÿ

k“1

CZτ pα
k
i q ´

ÿ

j

nj
ÿ

l“1

CZτ pβ
l
jq.

Definitions of these terms can be found in [35]. We will narrow our discussion of the ECH
index to exactly those terms which are useful for the proof of Proposition 2.3, namely
the relative Chern class and the Conley-Zehnder index. The relative Chern class cτ pZq
is defined as follows. We choose an oriented smooth surface S Ă Y representing Z and
choose a section ψ : S Ñ ξ, transverse to the zero section, such that ψ is a nonzero
constant on each component of BS and we set

cτ pZq :“ #ψ´1
p0q

where # denotes the oriented count of points. As for the Conley-Zehnder index, we
define it by

CZτ pγq “ rθτ pγqs` tθτ pγqt

where θτ pγq denotes the “monodromy number” of the linearized flow along γ in the
trivialization τ . We refer the reader to [35] for a definition of the monodromy num-
ber. We define the ECH index of a curve to be the ECH index of its homology class,
emphasizing that this is independent of the choice of τ .

3.1.7. Topological complexity of U-map curves. A variant of the ECH index called the
J0 index plays a key role in the proof of Propositions 2.2 and 2.3. In the notation of
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(4) we write

J0pZq :“ ´cτ pZq `Qτ pZq `
ÿ

i

mi´1
ÿ

k“1

CZτ pα
k
i q ´

ÿ

j

nj´1
ÿ

l“1

CZτ pβ
l
jq

“ IpZq ´ 2cτ pZq ´ p
ÿ

i

CZτ pα
mi
i q ´

ÿ

j

CZτ pβ
nj

j qq.

(5)

The J0 index controls the topological complexity of a holomorphic current counted
by the U -map. To state the bound precisely, we need to recall the following structural
property of U -map currents, a proof of which is found in [35, Proposition 3.7]. Any
current C PM2pα, β; zq counted by the U -map splits as a disjoint union C0\C2 where C0

is a union of trivial cylinders with multiplicities and C2 is an embedded J-holomorphic
curve with IpC2q “ 2.

Proposition 3.2 ([34, Section 6]). Fix a generic J and point z so that the chain map
UJ,z is defined, and let C “ C0\C2 PM2pα, β; zq be a J-holomorphic current counted
by the U-map. Then

(6) J0pCq ě ´χpC2q.

3.2. The based rotation number. To prove what we need to know about the ECH
curves, we will also need to recall some information about the “rotation number” of
flows. Our treatment here is inspired by, and closely follows [7], though we handle a
few points in a different way that is better suited for our purposes. For any closed Reeb
orbit γ : R {T Z Ñ Y and any choice of (positive) symplectic trivialization τ there is
a number ρτ pγ, ξq P R called the based rotation number of γ, which measures how ξ
rotates under the linearization of the Reeb flow. It is defined as follows. The linearized
flow is symplectic; apply polar de-composition and take the unitary part. The unitary
part descends to a flow on the oriented real projectivization P pξq. Pull back by γ and
conjugate with the trivialization τ to define a flow

Φ̄ : RˆpR {T ZˆR {Zq Ñ R {T ZˆR {Z
generated by a vector field R. We write θ : R {T ZˆR {Z Ñ R {Z for the angular
coordinate on the target. Let θ : r0, T s Ñ R be the unique real-valued lift of the circle-
valued map t ÞÑ θpΦ̄tp0, 0qq satisfying the initial condition θp0q “ 0. Then the based
rotation number is

ρτ pγ, ξq :“ θpT q.

This depends only on the homotopy class, rel endpoints, of the path of symplectic
matrices arising from the linearized flow.

The next lemma relates the based rotation number for the contact structure to the
Conley–Zehnder index.

Lemma 3.3. For any closed Reeb orbit γ and any trivialization τ , we have the bound

(7) |CZτ pγq ´ 2ρτ pγ, ξq| ď 6.

Proof. The Conley–Zehnder index is defined by

CZτ pγq “ rθτ pγqs` tθτ pγqt



GLOBAL LE CALVEZ–YOCCOZ THEOREMS 21

where θτ pγq denotes the monodromy number of γ in the trivialization τ . Define ρ1τ pγ, ξq
analogously to ρτ pγ, ξq, but using the full linearized flow rather than just the unitary
part. It is proved in [7, Lemma 2.6] that

|θτ pγq ´ ρ
1
τ pγ, ξq| ď 1.

It remains to understand the relationship between ρ and ρ1. We claim that

(8) |ρτ pγ, ξq ´ ρ
1
τ pγ, ξq| ď 1,

which implies the lemma in view of the above. To see why (8) holds, we first note
that if we choose as our basepoint (i.e. our trivialization τ) an eigenvector of the
positive-definite symmetric part of the polar decomposition of the time T linearized
flow, then in fact ρ1τ “ ρτ . Indeed, the space of positive-define symmetric and symplectic
matrices is contractible, and the rotation number only depends on the homotopy class,
rel endpoints, so we can replace the positive-definite part of the path of matrices arising
from the linearized flow by symmetric and symplectic positive-define matrices which all
have τ as an eigenvector with positive eigenvalue. The claimed inequality (8) now
follows from [7, Lemma 2.6], which bounds the difference between the based rotation
number measured with respect to two different basepoints. �

3.3. Proof of Proposition 2.3. We can now give the proof of Proposition 2.3.

Proof. Step 1: To deal with the fact that we are considering contact structures that are
torsion, but possibly non-trivial, we will need to work with an “nth-power” construction.
This step collects the results we will need about this.

Fix an integer n ě 1 such that n ¨ c1pξq “ 0. Write ξn “ ξ b . . . b ξ for the n-fold
(complex) tensor product of ξ. This is a (trivial) complex line bundle. Choose a unitary
trivialization τ of ξ over the simple closed Reeb orbits. This induces a trivialization τn
of ξn. The line bundle ξn has a relative Chern class, defined analogously to the contact
case. We first note that the relative Chern class of ξn with respect to τn is computed
as follows:

(9) cτnpZ, ξnq “ n ¨ cτ pZ, ξq.

Next, it is useful to understand how the Chern class depends on the choice of trivi-
alization. Fix any pair of unitary trivializations τ, τ 1 and any simple closed Reeb orbit
γ : R {T ZÑ Y . The trivializations define unitary bundle isomorphisms

τ, τ 1 : γ˚ξn Ñ R {T ZˆC;

the composition τ ˝ pτ 1q´1 defines a smooth map R {T ZÑ Up1q. Denote the degree of
this map by windγpτ, τ

1; ξnq. Then we have the identity

(10) cτ pZ, ξnq ´ cτ 1pZ, ξnq “ ´
ÿ

i

mi windαi
pτ, τ 1; ξq `

ÿ

j

nj windβjpτ, τ
1; ξnq.

This is proved by the same argument as in the case of contact structures [33].
There is an analogous story for the based rotation number. The unitary part of the

linearized flow, being complex linear, defines a map on the complex tensor product ξn
and we can defined the based rotation number analogously, which we call the induced
based rotation number (in the trivialization τq on ξn, denoted ρτ pγ, ξnq. We now prove
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some basic properties of the induced based rotation number analogous to the observed
properties of the relative Chern class.

Lemma 3.4. The unitary component of the based rotation number and the induced
based rotation number satisfy the following basic properties:

‚ (Change of trivialization) For any pair τ , τ 1 of unitary trivializations we have

(11) ρτ pγ, ξnq ´ ρτ 1pγ, ξnq “ windγpτ, τ
1; ξnq.

‚ (Additive under tensor product) For any n ě 1 we have

(12) ρτnpγ, ξnq “ n ¨ ρτ pγ, ξq.

Proof. Let Φ̄ and Φ̄1 be the respective flows on R {T ZˆR {Z defined by τ and τ 1. After
applying a constant rotation to one of the trivializations, we may assume without loss
of generality that τ´1p0, 0q “ pτ 1q´1p0, 0q. It follows that

Φ̄tp0, 0q “ pτ ˝ pτ
1
q
´1
q ˝ Φ̄1tp0, 0q

for each t P R. The lifts θ and θ
1
corresponding to τ and τ 1 differ by the lift of the map

R {T ZÑ Up1q defined by τ˝pτ 1q´1. The map R {T ZÑ Up1q has degree windγpτ, τ
1; Ξq,

so it follows that
θpT q ´ θ

1
pT q “ windγpτ, τ

1; Ξq

which proves (11).
Now fix any n ě 1 and let Φ̄ and Φ̄n be the respective flows on R {T ZˆR {Z defined

by τ and τn. We observe that
pΦ̄nqt “ n ¨ Φ̄t

for each t P R. This implies that θn “ n ¨ θ where θ and θn are the lifts corresponding
to τ and τn. Evaluating both sides at T yields (12). �

Step 2: Recall that the tensor power ξn is a trivial complex line bundle. We fix a
global unitary trivialization t of ξn over the entire manifold Y . Let λ1 be any nondegen-
erate contact form. Let α “ tpαi,miqu and β “ tpβj, njqu be any pair of homologous
ECH generators such that Apβq ď Apαq. This step proves that there exists a con-
stant δ ą 0 depending only on the background metric, the C2 norm of λ1, and the
trivialization t such that for any Z P H2pY, α, βq we have

(13) |IpZq ´ J0pZq| ď δApαq.
Write KpZq :“ IpZq ´ J0pZq. Choose any symplectic trivialization τ of ξ over the

simple closed Reeb orbits. Then KpZq expands as

KpZq “ 2cτ pZq `
ÿ

i

CZτ pα
mi
i q ´

ÿ

j

CZτ pβ
mj

j q.

We define

KapproxpZ, ξq :“ 2cτ pZ, ξq ` 2
ÿ

i

ρτ pα
mi
i , ξq ´ 2

ÿ

j

ρτ pβ
mj

j , ξq

and a corresponding version

(14) KapproxpZ, ξnq :“ 2cτ 1pZ, ξnq ` 2
ÿ

i

ρτ 1pα
mi
i , ξnq ´ 2

ÿ

j

ρτ 1pβ
mj

j , ξnq
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for ξn, where τ 1 denotes a unitary trivialization of ξn over the simple closed Reeb orbits.
It follows from (10) and (11) that the definition of KapproxpZ, ξnq does not depend on
the choice of τ 1. It follows from (7) that

(15) |KpZq ´KapproxpZ, ξq| ď 6
ÿ

i

mi ` 6
ÿ

j

mj ď 12Tminpλ
1
q
´1Apαq

where Tminpλ
1q denotes the minimal period of a closed Reeb orbit of λ1. Note that

Tminpλ
1q admits a positive lower bound depending only on the C2 norm of λ1.

We now bound KapproxpZ, ξq. Since the left-hand side in (14) does not depend on the
choice of τ 1 on the right-hand side, we set τ 1 “ τn and use (9) and (12) to show that

(16) KapproxpZ, ξq “ n´1
¨KapproxpZ, ξnq.

Now we set τ 1 “ t and expand

KapproxpZ, ξnq :“ 2ctpZ, ξnq ` 2
ÿ

i

ρtpα
mi
i , ξnq ´ 2

ÿ

j

ρtpβ
mj

j , ξnq.

It follows that immediately that ctpZ, ξnq “ 0. It remains to bound ρtpγ, ξnq for any
closed Reeb orbit γ : R {T ZÑ Y . To do so, it is convenient to observe that the based
rotation number along γ can be computed by integrating the “rotation density” of the
flow with respect to t. To be precise, the global trivialization t and the action of the
unitary part of the linearized flow on ξn define a flow

Φ̄t : RˆY ˆ R {ZÑ Y ˆ R {Z

generated by a vector field R̄. The Lie derivative of the R {Z-coordinate on the target
is a smooth function rt : Y Ñ R, which restricts to the rotation density on any simple
closed Reeb orbit. The function rt depends only on t and the linearized Reeb flow, so
|rt| admits a finite upper bound c ą 0 depending only on t and the C2 norm of λ1. We
conclude that

|ρtpγ, ξnq| ď sup |rt| ¨Apγq ď δ1 ¨Apγq.
It follows from the above bound that

(17) |KapproxpZ, ξnq| ď 2δ1p
ÿ

i

miApαiq `
ÿ

j

nj Apβjqq ď 4δ1Apαq.

Combine (15), (16), and (17) to show

|KpZq| ď p12Tminpλ
1
q
´1
` 4δ1qApαq

which proves (13) with δ :“ 12Tminpλ
1q´1 ` 4δ1.

Step 3: To simplify the notation, write c1k “ cσkpλ
1q. Choose generic J and z not on a

closed Reeb orbit such that the chain map UJ,z is well-defined. By Lemma 3.1, for any
k ě 1, there exists an ECH generator αk such that

(i) Apαkq ď c1k;
(ii) Uk

J,zpαkq ‰ 0.
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It follows that there exists a sequence of ECH generators tβju
k
j“0, each with Apβjq ď

c1k, and J-holomorphic currents tCjukj“1 such that Cj P Mpβj, βj´1q, IpCjq “ 2, and

p0, zq P supppCjq for each j. Now set Z :“
řk
j“1rCjs. Using the fact that IpCjq “ 2 for

each j and the bound (13) we derive the bound

(18)
k
ÿ

j“1

J0pCjq “ J0pZq ď 2k ` δApαkq ď 2k ` 2δc1k.

It is an immediate consequence of (6) that J0pCjq ě ´1 for each j. Write S1 for the
set of indices j such that

J0pCjq ě 3.

It follows that 3S1 ´ pk ´ S1q ď 2k ` δc1k, hence

(19) #S1 ď
3

4
k `

δ

4
c1k.

Write S2 for the set of all indices j such that ApCjq ě k´1{16. Since
řk
j“1ApCjq “

Apαkq ´Apβ0q ď c1k, and the action is nonnegative, it follows that

(20) #S2 ď c1kk
1{8.

The quantity ckpλq isOpk1{2q, in view of (3), and for λ1 sufficiently close to λ c1k ď 2ckpλq.
Thus, by (19) and (20) there exists an index 0 ď j ď k in neither S1 nor S2.

Take Ck to be any component of Cj passing through p0, zq. By (6) it follows that
χpCkq ě ´J0pCjq. Thus, Ck satisfies the requirements of Proposition 2.3. �

4. Low-action curves from periodic Floer homology

This section proves Proposition 2.2 using the theory of periodic Floer homology
(PFH), an analogue of ECH for area-preserving surface maps defined in [33, 36]. The
proof is relatively simple compared to the proof of Proposition 2.3 above, which uses
deep quantitative properties of ECH. We exploit an algebraic aspect of PFH that is not
present in ECH, namely that PFH has many “U -cycles” [22, 18].

4.1. Periodic Floer homology. We review the theory of PFH. We will discuss both
the basics and some key new developments in the theory. Fix a closed, oriented surface
Σ of genus g, an area form ω, and a diffeomorphism φ : Σ Ñ Σ preserving the area
form.

4.1.1. Basics. The mapping torus of φ is the 3-manifold

Yφ :“ r0, 1s ˆ Σ { p1, pq „ p0, φppqq.

Write t for the coordinate on the interval r0, 1s. The one-form dt on r0, 1sˆΣ descends
to a closed 1-form, also denoted by dt, on Yφ. The area form ω defines a closed two-form
ωφ on Yφ. The pair η “ pdt, ωφq is a framed Hamiltonian structure and the Reeb vector
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field Rφ :“ Rη generates the suspension flow of φ. The mapping torus Yφ fibers over
the circle; write Vφ Ñ Yφ for the vertical tangent bundle.

Several key definitions carry over to this setting from ECH. In analogy with ECH, we
will call periodic orbits of Rφ closed Reeb orbits. The definitions of elliptic/hyperbolic
orbits from ECH have analogues here, replacing the bundle ξ with the bundle Vφ.
Moreover, the ECH and J0 indices are also defined in this setting, again replacing ξ
with Vφ.

4.1.2. Rationality and monotonicity. We say φ is rational if the cohomology class rωφs
is a real multiple of a rational class. We say that φ is monotone if it is rational and we
have c1pVφq “ crωφs for some constant c P R. When g ‰ 1, our monotonicity condition
coincides with the monotonicity condition introduced by Seidel [50]. When g “ 1,
we show in Lemma A.3 that c1pVφq always vanishes, so any rational area-preserving
diffeomorphism is monotone in this case.

4.1.3. Definition of PFH. The definition of the version of PFH that we will use re-
quires that φ is rational and also nondegenerate, meaning every closed Reeb orbit is
either elliptic or hyperbolic. Choose a generic η-adapted almost-complex structure J
on RˆYφ. Choose a union γ of embedded loops, transverse to Yφ, called a reference
cycle. Let Σ denote the homology class of a fiber of the map Yφ Ñ S1. The degree dpγq
of γ is the oriented intersection number of γ with rΣs P H2pYφ;Zq. We assume that
dpγq ą maxp0, g´1q and that that γ is monotone. This means that the homology class
Γ :“ rγs P H1pYφ;Zq satisfies the identity

(21) c1pVφq ` 2 PDpΓq “ c ¨ rωφs

for some constant c ‰ 0. The constant c is explicitly computable: pairing both sides of
(21) with rΣs shows that the constant c “ 2A´1pd´ g ` 1q, where A :“

ş

Σ
ω. We note

that (21) has a solution if and only if φ is rational, and that if (21) has a solution, it
has solutions of arbitrarily high degree. Finally, let Kφ :“ kerpωφq denote the subgroup
of all integral homology classes on which ωφ integrates to 0.

The PFH chain complex PFC˚pφ, γq is defined to be the vector space over Z {2
freely generated by pairs Θ “ pα,Zq that we call anchored ECH generators. Here
α “ tpαi,miqu is an ECH generator such that rαs “ rγs and Z is an element of
H2pYφ, α, γq{Kφ (recall that H2pYφ, α, γq is an affine space over H2pYφ;Zq).

The differential BJ is defined similarly to the ECH differential, although now we take
the relative homology classes of the holomorphic curves into account. WriteMpα, β,W q
for the moduli space of holomorphic currents from α to β that represent the class
W P H2pY, α, βq; let Mkpα, β,W q denote the subspace of currents with ECH index k.
Fix a pair of anchored ECH generators Θ “ pα,Zq, Θ1 “ pβ, Z 1q. The matrix coefficient
of BJ with respect to Θ and Θ1 is defined by the formula

xBΘ,Θ1
y :“ #2M1pα, β, Z ´ Z

1
q{R .

Write PFH˚pφ, γq for the homology of the complex pPFC˚pφ, γq, BJq. The PFH chain
complex and homology group carry some additional basic features that we now review.
There is a natural action of H2pYφ;Zq on PFC˚pφ, γ, Jq; a class W P H2pYφ;Zq acts
on a generator pα,Zq by sending it to pα,Z ` W q. This action commutes with the
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differential and so descends to an action on PFH˚pφ, γq as well. The U -map on PFH is
also defined analogously to the U -map for ECH.

After choosing a framing of Vφ over γ, the PFH complex also comes equipped with a
Z-grading, which is defined for each anchored ECH generator by the formula

(22) IpΘq :“ cτ pZq `Qτ pZq `
ÿ

i

mi
ÿ

k“1

CZτ pα
k
i q.

The differential and U -map have degree ´1 and ´2 with respect to this grading. The
H2-action shifts the grading as follows:

(23) IpW ¨Θq “ IpΘq ` xc1pVφq ` 2 PDpΓq,W y “ IpΘq ` 2A´1
pd´ g ` 1q

ż

W

ωφ

for any anchored ECH generator Θ and any W P H2pYφ;Zq. The last line uses (21)
and our computation of the monotonicity constant above. The identity (23) also shows
that the Z-grading is well-defined.

4.1.4. The U-cycle property. The analogue of a U -tower in ECH is a U-cycle. Assume
that φ is nondegenerate and rational and choose a monotone reference cycle γ so that
PFH is well-defined. A nonzero element σ P PFH˚pφ, γ,Gq is U-cyclic of order m for
some integer m ě 1 if

Umpdpγq´g`1qσ “ p´mrΣsq ¨ σ.

It is known that every nonzero element of PFH is U -cyclic as long as γ has sufficiently
high degree.

Proposition 4.1 (Existence of U -cyclic elements, [18]). Assume that φ is nonde-
generate and rational and fix a monotone reference cycle γ. There exists an integer
d0 ą maxp0, g ´ 1q, depending only on the Hamiltonian isotopy class of φ, such that if
dpγq ě d0, then PFH˚pφ, γq ‰ 0 and every nonzero class is U-cyclic.

The following lemma is a “chain-level” version of Proposition 4.1.

Lemma 4.2. Assume that φ is nondegenerate and rational and fix a monotone reference
cycle γ. There exists an integer d0 ą maxp0, g´ 1q, depending only on the Hamiltonian
isotopy class of φ, such that the following holds. Choose any monotone reference cycle
γ such that dpγq ě d0. Choose generic J and z P Yφ so that the chain-level map UJ,z is
well-defined. Then there exist positive integers m0 and m1 and a sequence tΘju

m1
j“1 of

nonzero generators of PFC˚pφ, γq such that

xU
m0pdpγq´g`1q
J,z Θj,Θj`1y ‰ 0

for each j P t1, . . . ,m1 ´ 1u and

xU
m0pdpγq´g`1q
J,z Θm1 ,m0m1rΣs ¨Θ1y ‰ 0.

Proof. Suppose γ has sufficiently high degree so that Proposition 4.1 holds. Choose a
trivialization of the restriction of Vφ to γ and use this to define a Z-grading on PFH.
Fix a grading k for which PFHkpφ, γq ‰ 0. Write Zk Ă PFCkpφ, γq for the space of
cycles of degree k, and Bk for the space of boundaries of degree k. The proof will take
3 steps.
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Step 1: This step shows that Zk and Bk have finite dimension over Z {2. By the
change of grading formula (23), it follows that for each ECH generator α there exists
at most one anchored ECH generator Θ “ pα,Zq such that IpΘq “ k. Since φ is
nondegenerate, it has finitely many ECH generators representing any given homology
class in H1pYφ;Zq. This implies that PFCkpφ, γq contains finitely many anchored ECH
generators, so it is a finite-dimensional Z {2-vector space. This implies that Zk and Bk

have finite dimension as well.
Step 2: This step uses Proposition 4.1 to show that there is a nonzero cycle x P Zk fixed
up to a shift by an iterate of the U -map. Fix generic J and z so that the chain-level
map UJ,z is well defined. Proposition 4.1 implies that there exists an integer m0 ě 1
such that for any nonzero cycle x P Zk, there exists a chain z such that

(24) m0rΣs ¨ U
m0pdpγq´g`1q
J,z x “ x` Bz.

Let T be the restriction of m0rΣs ¨ U
m0pdpγq´g`1q
J,z to Zk. Then (24) implies that

ImpT ´ 1q Ď Bk. Since PFHkpφ, γq ‰ 0, it follows that dimpZkq ą dimpBkq. This
implies that the operator T ´ 1 has nonzero kernel and therefore there exists some
nonzero x P Zk such that Tx “ x.
Step 3: This step completes the proof. Expand the element x from the previous step
into a sum

řN
i“1 xi where each xi is an anchored ECH generator. The desired cyclic

sequence tΘju
m1
j“1 of anchored ECH generators will be picked out from the xi using a

short combinatorial argument. Define a directed graph G as follows. The vertex set of
G is t1, . . . , Nu and there is an edge from i to j if and only if xTxi, xjy ‰ 0. We allow
edges to start and end at the same vertex. It is well-known that any directed graph
with no sources, i.e. vertices which have no incoming edges, has a directed cycle. Now,
G has no sources: this follows because Tx “ x implies that for each j, the identity
xTx, xjy ‰ 0 holds, which in turn implies that there exists some i such that G has an
edge from i to j. Thus, G has a cycle. Thus, there exists a set tx1ju

m1
j“1 of anchored

ECH generataors such that

(25) xTx1j, x
1
j`1y ‰ 0, xTx1m1

, x11y ‰ 0,

for each j P t1, . . . ,m1 ´ 1u. For each j, set Θj :“ ´pj ´ 1qm0rΣs ¨ x
1
j. Then, the

Θj satisfy the conditions of the lemma by (25), since T “ m0rΣs ¨ U
m0pdpγq´g`1q
J,z by

definition. �

4.2. Proof of Proposition 2.2. We now suppose that φ is monotone, which we re-
call means c1pVφq “ crωφs for some constant c P R. The proof of Proposition 2.2 is
an immediate consequence of the following result, since the monotonicity condition is
preserved under Hamiltonian isotopy.

Proposition 4.3. Assume that φ is nondegenerate and monotone. There exists an
integer d0 ě maxp0, g´ 1q depending only on g and the Hamiltonian isotopy class such
that for any z P Yφ not on any closed Reeb orbit, and generic J , there exists a standard
J-holomorphic curve ud : Cd Ñ RˆYφ satisfying the following properties:

(a) p0, zq P udpCdq.
(b) Epudq ď d.
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(c) Apudq ď d´1{2.
(d) χpCdq ě ´2.

Proof. Fix d0 ą 0 so that Lemma 4.2 holds and fix any monotone reference cycle γ with
degree d :“ dpγq ě d0. The proof will take 2 steps.
Step 1: Fix generic J and z so that the map UJ,z is well-defined on PFC˚pφ, γq.
Let tΘju

m1
j“1 denote the sequence of generators provided by Lemma 4.2. Then, by

Lemma 4.2, we obtain a sequence C1, . . . , Cm0m1pd´g`1q of J-holomorphic currents counted
by the U -map such that

m1m0pdpγq´g`1q
ÿ

i“1

rCis “ m0m1rΣs P H2pYφ, α1, α1q “ H2pYφ;Zq{Kφ.

By additivity of the action and of J0 we therefore obtain

(26)

m1m0pdpγq´g`1q
ÿ

i“1

ApCiq “ m0m1A,

m1m0pdpγq´g`1q
ÿ

i“1

J0pCiq “ 2m0m1pdpγq ` g ´ 1q.

In the equality for J0, we have used the fact that φ is monotone, which implies that
c1pVφq has zero pairing with Kφ, together with the fact that J0prΣsq “ 2pdpγq ` g ´ 1q.
Step 2: This step finishes the proof of the proposition. Write S1 for the set of i such
that ApCiq ą dpγq´1{2 and write S2 for the set of i such that J0pCiq ě 3. Then, by
nonnegativity of the action of pseudoholomorphic curves, and (26), we have

(27) #S1 ď Am0m1pdpγqq
1{2.

Since the J0 index is bounded below by ´1, the bound (26) implies

(28) #S2 ď m0m1p3dpγq ` g ´ 1q{4.

Thus, after possibly increasing d0, we have the strict inequality

#pS1 Y S2q ă m0m1pdpγq ´ g ` 1q.

This implies that there exists some i such that ApCiq ď pdpγqq´1{2 and J0pCiq ď 2.
Thus, the component ud : Cd Ñ RˆYφ of Ci containing p0, zq has Apudq ď pdpγqq1{2

and χpCdq ě ´2, by (6). It remains to show that Epudq ď dpγq : this follows since, as
dt is closed, the integral of dt over any level set of Ci is equal to the pairing xdt, rγsy “
dpγq. �

5. Invariant sets from low-action holomorphic curves

The purpose of this section is to prove Theorem 6. For the remainder of the section,
we fix a closed, smooth, connected, oriented manifold Y of odd dimension 2n` 1 ě 3.

5.1. Notational preliminaries. Let us begin by reviewing the setup.

5.1.1. Stable constants. The statements and proofs below will involve several constants
which depend on Y , η, and J , where η is a framed Hamiltonian structure on Y and J
is an η-adapted almost-complex structure. We say that such a constant is stable if it
can be taken to be invariant under C8-small perturbations of η and J .
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5.1.2. Geometry of symplectizations. Let DpY q be the space of pairs pη, Jq where η is
a framed Hamiltonian structure and J is an η-adapted almost-complex structure of
RˆY . We equip DpY q with the topology of C8-convergence. That is, a sequence
tpηk “ pλk, ωkq, Jkqu in DpY q converges to pη “ pλ, ωq, Jq if and only if the sequences
tλku, tωku, and tJku converge in the C8-topology to λ, ω, and J , respectively. Choose a
pair pη “ pλ, ωq, Jq P DpY q. To this pair we associate the following translation-invariant
and J-invariant Riemannian metric on RˆY :

g :“ dab da` λb λ` ωp´, J´q.

We fix notation for norms of tensors with respect to g. For any smooth tensor T on
RˆY , write | T |g for its pointwise g-norm, which is a smooth function on RˆY . Write
} T }g :“ supzPRˆY | T |gpzq for the C0 norm of T with respect to g. We fix notation
for the metric balls of g. Let distg denote the distance function of g. Omitting the
dependence on g for brevity, we let

Brpzq :“ tw P RˆY | distgpz, wq ď ru

denote the closed metric ball of radius r ą 0 centered at z P RˆY .

5.1.3. Geometry of J-holomorphic curves. Fix a J-holomorphic curve u : C Ñ RˆY .
We say u is compact and connected if the domain C is respectively compact and con-
nected. We say u is generally immersed if the critical point set Critpuq is discrete. This
is always true if C is connected and u is not a constant map. We say u is boundary
immersed if the restriction of u to BC is an immersion. We assume for the sake of con-
venience that any J-holomorphic curves is generally immersed and boundary immersed
unless stated otherwise.

We let γ :“ u˚g denote the pullback metric on C, which is defined at any point z P C
such that dupzq ‰ 0. In particular, for a generally immersed curve, the metric is defined
outside of a discrete subset of points. Let α :“ u˚λ denote the pullback of λ. Let | T |γ
and } T }γ denote the pointwise and C0 norms of a tensor T with respect to γ. For any
domain U Ď C, we define its area to be the integral of the volume form of γ over the
set U z Critpuq:

AreaγpUq :“

ż

U z Critpuq

dvolγ .

5.2. The connected-local area bound and its significance. The main estimate
required for the proof of Theorem 6 is a so-called “connected-local area bound”. In
this section we state this estimate, deferring the proof to Section 5.5, and then use it
to prove Theorem 6.

Given a J-holomorphic curve u : C Ñ RˆY , any point ζ P C, and any r ą 0, let
Srpζq denote the connected component of u´1pBrpupζqqq containing ζ. Our estimate
gives an a priori bound on the area of Srpζq assuming that Apuq is small and r is small.
The bound depends on the Euler characteristic of C, which is the primary reason why
Euler characteristic bounds are assumed in Theorem 6.

Proposition 5.1 (Connected-local area bound for low-action curves). Fix pη, Jq P
DpY q. There exists stable constants ε7 “ ε7pη, Jq ą 0 and ε8 “ ε8pη, Jq ą 0 such that
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the following holds. Let u : C Ñ RˆY be a standard J-holomorphic curve such that
Apuq ď ε7. Then for any point ζ P C, we have the bound

(29) AreaγpSε8pζqq ď ε´1
8 pχpCq

2
` 1q.

Proposition 5.1 is inspired by [24, Thm. 5], the “asymptotic connected-local area
bound” for “feral” curves, a fundamental result in the new Fish-Hofer theory. There
are several new aspects here. The main point is that [24, Thm. 5] is an asymptotic result
for a fixed curve (of possibly unbounded Hofer energy, but finite action.) This allows
for the reduction to annular curves, whereas in our setting we need to consider much
more complicated topologies; new arguments are required for this. Another novelty is
the replacement of the asymptotic condition with a bound on the action instead. Both
here and in [24] one also has to be very careful with the constants to ensure stability.

Let us now explain why Theorem 6 follows from Proposition 5.1. The argument for
this appeared in the feral context in [24, Proposition 4.47].

Proof of Theorem 6. As the argument from here is essentially the same as [24, Proposi-
tion 4.47] except for minor modifications, we will only provide a sketch highlighting the
key points. Fix pη, Jq P DpY q and a sequence tpηk, Jkqu in DpY q converging to it. Fix a
sequence tuk : Ck Ñ Y u of standard Jk-holomorphic curves such that limkÑ8Apukq “ 0
and infk χpCkq ą ´8. Let X Ă KpXq denote the limit set and choose any Λ P X .
When k is sufficiently large, and therefore Apukq is sufficiently small, it follows that
pa ˝ ukqpCkq “ R, hence Λ is non-empty. To see that Λ “ p´1, 1q ˆ Λ, where Λ P KpY q
is Rη-invariant, it suffices to show that for any z :“ pt, yq P Λ there exist some ε ą 0
such that

pt` τ, yq P Λ, pt, φτ pyqq P Λ

for any τ P p´ε, εq, where tφtutPR denotes the flow of Rη. This is proved by a standard
application of Fish’s target-local Gromov compactness theorem (the version stated in
[24, Theorem 2.36]). Fix points ζk P Ck such that ukpζkq Ñ z and define local patches
Sk :“ Sε8pζkq Ă Ck. Proposition 5.1 gives a k-independent upper bound on AreaγpSkq
in view of the fact that Apukq Ñ 0, tχpCkqu is uniformly bounded, and all constants are
stable. The surfaces Sk have uniformly bounded genus as well, because of the uniform
bound on χpCkq. Thus, we are justified in applying target-local Gromov compactness,
and after passing to the limit obtain a non-constant holomorphic curve passing through
z and contained in Λ. The curve has action 0, due to the fact that Apukq Ñ 0, and
hence has tangent plane at any immersed point equal to SpanpBa, Rηq, from which the
desired property follows. �

5.3. Properties of the limit set. Before diving into the proof of the connected-local
area bound, we provide a proof of Proposition 1.9 from the introduction. We start with
a pair of lemmas. To state the first lemma, it is useful to fix the following notation.
For any pη1, J 1q P DpY q, any standard J 1-holomorphic curve u : C Ñ RˆY defines a
map

Su : RÑ KpXq,

s ÞÑ τs ¨
´

upCq X ps´ 1, s` 1q ˆ Y q.
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We make the following assertion:

Lemma 5.2. For any pη1, J 1q P DpY q and any standard J 1-holomorphic curve u : C Ñ
RˆY , the map Su is continuous.

The next lemma is a purely topological statement.

Lemma 5.3. Let K be any compact and metrizable topological space. Let Zk Ď K be
a sequence of connected subsets. Then there exists a subsequence Wj :“ Zkj such that
their set of subsequential limit points is connected.

Lemma 5.2 has a short and elementary proof.

Proof of Lemma 5.2. It suffices to prove that for any sequence sk Ñ s in R, we have
Supskq Ñ Supsq in KpXq. The proof will take 2 steps.
Step 1: This step proves that lim supSupskq Ď Supsq. Choose any point z “ pt, yq P
lim supSupskq Ď X. Then any neighborhood of z meets infinitely many of the sets

Supskq “ τsk ¨
´

upCq X psk ´ 1, sk ` 1q ˆ Y
¯

.

After passing to a subsequence, there exists a sequence of points zk “ ptk, ykq P Supskq
such that tk Ñ t and yk Ñ y. Choose some small ε ą 0 such that t˘ ε P p´1, 1q. Note
that τ´skpzkq P upCq for each k. Since sk Ñ s and tk Ñ t, it follows that

τ´skpzkq P upCq X rs` t´ ε, s` t` εs ˆ Y

for sufficiently large k. Since upCq is proper, the set on the right-hand side is closed.
The points τ´skpzkq converge to τ´spzq, so it follows that

τ´spzqq P upCq X rs` t´ ε, s` t` εs ˆ Y Ă upCq X ps´ 1, s` 1q ˆ Y

and therefore that z P Supsq.
Step 2: This step proves that Supsq Ď lim inf Supskq. Fix any z “ pt, yq P Supsq. We
must show that any neighborhood of z has non-empty intersection with all but finitely
many of the sets Supskq. Write zk :“ τsk´spzq “ p´sk`s`t, yq. For all sufficiently large
k, we have that´sk`s`t P p´1, 1q, so it follows that τ´skpzkq P upCqXpsk´1, sk`1qˆY .
This implies zk P Supskq for sufficiently large k. Since zk Ñ z, we conclude that any
neighborhood of z meets Supskq for sufficiently large k.

�

Next, we prove Lemma 5.3.

Proof of Lemma 5.3. Let Wj :“ Zkj be any subsequence for which there exist points
wj P Wj converging to some w P K. Let W denote the set of subsequential limit points
of tWju. The proof that W is connected will take 4 steps.
Step 1: This step makes some simplifying observations. It suffices to show that, for any
pair of disjoint open subsets U and V such that W Ď U \ V , we have either W Ď U or
W Ď V . Without loss of generality, we will assume that the point w P W is contained
in U , and then show that W Ď U .
Step 2: This step proves that Wj Ď U \ V for all sufficiently large j. We prove it by
contradiction. Assume that the claim is false. Then, after passing to a subsequence,
there exists for each j some w1j P Wj such that w1j R U \ V for any j. Since K is
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compact and metrizable, it is sequentially compact, and therefore a subsequence of
tw1ju converges to some w1 P W . However, the complement of U \ V is closed, so w1

does not lie in U \ V , contradicting the initial assumption that W Ď U \ V .
Step 3: This step proves that Wj Ď U for all sufficiently large j. By Step 2 and the
fact that Wj is connected for each j, we either have Wj Ď U or Wj Ď V for large j.
Since wj Ñ w P U , it follows that Wj has non-empty intersection with U for sufficiently
large j, which implies Wj Ď U .
Step 4: This step completes the proof. By Step 3, it follows that W lies inside the
closure U . Any open set intersecting U must intersect U , so V is disjoint from U . We
conclude that W Ď U .

�

We now give the promised proof of Proposition 1.9.

Proof of Proposition 1.9. Fix pη, Jq P DpY q and a sequence tpηk, Jkqu in DpY q con-
verging to it. Fix a sequence tuk : Ck Ñ RˆY u of standard Jk-holomorphic curves.
Recall that each curve uk defines a continuous map Sk :“ Suk from R to KpXq. Write
Zk :“ SkpRq for each k. By Lemma 5.2, Zk is the image by a continuous map of a
connected space, so it is connected. Thus, tZku is a sequence of connected subsets of the
compact and metrizable space KpXq. The limit set X is equal to the set of subsequential
limit points of the sequence tZku. The proposition now follows from Lemma 5.3. �

5.4. Preliminaries from feral curve theory. It remains to prove Proposition 5.1,
which will take up the remainder of the paper. To do this, we need to first collect and
review some more preliminaries from the work of Fish–Hofer [24], which is the purpose
of this section.

5.4.1. Perturbed holomorphic curves. Many of the estimates in [24] are easiest when
the height function a ˝ u of the pseudoholomorphic curve is Morse. Unfortunately, this
is not in general the case, so the notion of a “perturbed curve” was introduced there
to remedy this. More precisely, a perturbed J-holomorphic curve is a pair pu, fq where
u : C Ñ RˆY is a J-holomorphic curve and f : C Ñ R is a smooth function which is
compactly supported in the open subset C z pBCYCritpuqq. Perturbing u in the vertical
direction by f defines a new map

ru : ζ ÞÑ expgupζqpfpζqBaq.

Write rγ :“ ru˚g for the induced pullback metric. Define an almost-complex structure rj
on C as the unique almost-complex structure which is a rγ-isometry and coincides with
j on the complement of supppfq. We then define a one-form

rα :“ ´pru˚da ˝ rjq

on C. This should be thought of as a perturbation of α “ u˚λ “ ´pu˚da ˝ jq.
As in [24], the perturbation is subject to some quantitative controls. This is encoded

in the notion of a pδ, εq-tame perturbation, which is found in [24, Definition 4.24]. We
will not repeat the precise definition of a pδ, εq-tame perturbation, since we never make
explicit use of it, but we will recall its key attributes. The constant δ ą 0 controls the
support of f and the domain where a ˝ ru is Morse. That is, f is supported outside
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a δ{2-neighborhood of Critpuq, and a ˝ ru is Morse outside of a δ-neighborhood. The
constant ε controls the C2 norm of f . We require δ to be smaller than a constant
depending on u and ambient geometry, and ε to be smaller than a constant depending
on δ, u, and ambient geometry.

Given a tame perturbation pu, fq, several explicit estimates are proved in [24, Section
4.1] relating the perturbed map ru to the unperturbed map u. We do not make direct
use of the majority of them, although they are key ingredients in the proofs of other
estimates from [24] that we cite. One estimate which we do use relates the perturbed
and unperturbed pullback metrics:

Lemma 5.4 ([24, Equation 4.3]). Fix pη, Jq P DpY q. Fix a J-holomorphic curve
u : C Ñ RˆY and any pδ, εq-tame perturbation pu, fq. Then we have

γ{2 ď rγ ď 2γ,

where we recall that γ “ u˚g and rγ “ ru˚g.

We also remark that if the curve u is immersed, then we can use much simpler
perturbations, because there are no singularities for the perturbation to avoid. Call a
perturbation ε-Morse if a ˝ ru is Morse over the entire domain C and if the C2 norm of
f is smaller than ε. Our main dynamical results (Theorems 1–3) only require working
with embedded holomorphic curves. A reader who is solely interested in these results
can replace all instances of pδ, εq-tame perturbations with ε-Morse perturbations, where
ε is very small. Lemma 5.4 is also straightforward if u is immersed. In this case rγ is
ε-close to γ in the C1 topology. In the non-immersed setting, some care is required
because γ degenerates as it approaches Critpuq.

5.4.2. Tracts. Fix a perturbed J-holomorphic curve pu, fq. Tracts and strips, intro-
duced in [24], are highly structured compact portions of the domain C. They are
important because they satisfy several geometric estimates. A tract in pu, fq is a con-

nected, compact embedded surface rC Ă C, possibly with boundary and corners, such
that:

(i) The boundary B rC is disjoint from Critpa ˝ ruq;

(ii) The boundary of rC decomposes as Bh rC Y Bv rC where

(a) Bh rC X Bv rC is a finite set of corners;

(b) If it is non-empty, each component of Bv rC is tangent to the gradient vector
field grad

rγpa ˝ ruq;

(c) The function a ˝ ru is constant on each component of Bh rC.

The sets Bh rC and Bv rC are respectively called the horizontal and vertical boundaries

of the tract rC.

5.4.3. Strips. For the proof of Proposition 5.12 at the end of this section, we need
to introduce the notion of a strip. Strips, which are closely related to tracts, were
originally defined in [24, Definition 4.17]; we write down a simpler version of their
definition which is sufficient for our purposes. A strip (in our sense) in pu, fq is an

embedded rectangle rC Ă C, i.e. a compact domain of genus zero with four smooth
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Figure 1. A tract (blue) and a strip (red).

boundary curves meeting in four corners, satisfying the following two properties. First,
rC contains no critical points of a ˝ ru. Second, the boundary B rC decomposes as a union

Bh rC Y Bv rC with certain properties. The set Bv rC is called the vertical boundary, and

consists of a pair of disjoint smooth curves tangent to gradpa˝ruq. The set Bh rC is called
the horizontal boundary, and consists of a pair of disjoint smooth curves, which each

meet the segments of Bv rC at the corners. An illustration is provided in Figure 1. We

label the two components of Bh rC with the notation B˘h
rC. The labelling is uniquely

determined by the condition supζPB`h rCpa ˝ ruqpζq ą supζPB´h rCpa ˝ ruqpζq. We call B`h
rC the

top horizontal boundary and B´h
rC the bottom horizontal boundary.

The strips we use below are always defined by fixing a segment I mapping into a
level set of a ˝ ru and taking a union of gradient flow segments starting at points ζ P I.

The resulting strip rC will have B´h
rC “ I and B`h

rC consisting of the endpoints of these
gradient flow segments.

5.4.4. Exponential area bound for tracts. In the classical theory of J-holomorphic curves
in symplectizations, area bounds are deduced from Hofer energy bounds. The following
result provides an alternative in the absence of Hofer energy bounds. It is arguably the
most crucial estimate in [24]. For example, it shows up in the proofs of Proposition 5.8,
Lemma 5.6, and Lemma 5.7 below.

Proposition 5.5 ([24, Theorem 9]). Fix pη, Jq P DpY q. Let pu, fq be a pδ, εq-tame

perturbed J-holomorphic curve with domain C and let rC Ă C be a tract of pu, fq, for
which there exist constants a` ą a´ such that

(i) pa ˝ ruqp rCq Ă ra´, a`s;

(ii) pa ˝ ruqpBh rCq X pa´, a`q “ H;
(iii) a` and a´ are regular values of a ˝ ru.
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Then there exists a stable constant c1 “ c1pη, Jq ě 1 such that

(30) Area
rγp rCq “ď c1e

c1pa`´a´q
´

ż

pa˝uq´1pa´qX rC

rα `Apuq
¯

.

Given its importance, we briefly summarize the proof of Proposition 5.5 for the reader.
One can compute

Area
rγp rCq “

ż

rC

ru˚da^ rα ` ru˚ω “

ż a`

a´

´

ż

pa˝ruq´1X rC

rα
¯

dt`Apuq.

Write eptq for the rα-measure of pa ˝ ruq´1ptq X rC. Whenever the interval rt´, t`s

contains no critical values, one proves the bound ept`q´ ept´q À
şt`
t´
epsqds` δ, where δ

is some controllable error term. Using Gronwall’s inequality, it follows that eptq grows
exponentially in t. This is plugged into the computation above to deduce (30).

5.4.5. Strip estimates. We now state two technical estimates for strips of perturbed
J-holomorphic curves, which are used only in the proof of Proposition 5.12 at the end
of this section. Lemma 5.6, which is a simpler version of a lemma from [24], shows that
the length of the bottom horizontal boundary of a strip is controlled by the length of
the top horizontal boundary, provided that the strip is not too tall.

Lemma 5.6 ([24, Lemma 4.21]). Fix pη, Jq P DpY q. Then there exists a stable constant

c2 “ c2pη, Jq ě 1 such that the following holds. Let rC be a strip of a pδ, εq-tame perturbed

J-holomorphic curve pu, fq such that a ˝ ru is constant on B´h
rC and

sup
ζP rC

pa ˝ ruqpζq ´ inf
ζP rC
pa ˝ ruqpζq ď c´1

2

Then we have the bound
ż

B
´
h
rC

rα ď 2

ż

B
`
h
rC

rα ` 2c2

ż

rC

u˚ω.

Lemma 5.6 is proved using Proposition 5.5. To state the next lemma, we need another

definition. A strip rC is rectangular if both B˘h
rC are contained inside level sets of a ˝ ru.

The lemma asserts that for any finite collection of strips which are not too tall or too
short, one of them contains a gradient flow line of a˝ru of controlled length running from
the bottom horizontal boundary component to the top horizontal boundary component.

Lemma 5.7 ([24, Lemma 4.23]). Fix pη, Jq P DpY q. There exists a stable constant
c3 “ c3pη, Jq ě 1 such that the following holds. Let pu, fq be a pδ, εq-tame perturbed

J-holomorphic curve. Let t rCku
n
k“1 be a finite set of rectangular strips of pu, fq satisfying

the following properties:

(i) a0 “ infζP rCk
pa ˝ ruqpζq is independent of k;

(ii) a1 “ supζP rCk
pa ˝ ruqpζq is independent of k;

(iii) a1 ´ a0 ď c´1
3 ;

(iv)
řn
k“1

ş

rCk
u˚ω ď pa1 ´ a0q

řn
k“1

ş

B
´
h
rCk
rα;

(v) Each of the strips t rCku
n
k“1 are pairwise disjoint.
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Then there exists k P t1, . . . , nu and a smooth map q : r0, ss Ñ rCk such that

9qpsq “ grad
rγpa ˝ ruqpqpsqq, pa ˝ ru ˝ qqp0q “ a0, pa ˝ ru ˝ qqpsq “ a1

and

length
rγpqpr0, ssqq ď c3pa1 ´ a0q.

The proof of Lemma 5.7 is rather intricate, since the lengths of gradient flow lines
could be heavily distorted in the areas where the norm of gradpa ˝ ruq is small. We refer
the reader to [24, Section 4.3.1] for details.

5.4.6. Action quantization. Fish–Hofer [24, Theorem 4] proved that a holomorphic
curve u : C Ñ RˆY has a positive lower bound on its action near any interior global
maximum/minimum of the function a ˝ u. Their lower bound depends on the genus of
C, which suffices for our intended applications. For the sake of a cleaner statement,
we note that the bound can be made genus-independent using the compactness theory
of J-holomorphic currents [48, Remark 5.20]. We now state the precise quantization
result.

Proposition 5.8 ([24, Theorem 4]). Fix pη, Jq P DpY q. Fix any real number s ą 0.
There exists a stable constant ~ “ ~pη, J, sq ą 0 such that, for any compact, connected
J-holomorphic curve u : C Ñ Rˆ Y , we have

Apuq ě ~ ą 0

provided that the following properties are satisfied for some a0 P R:

(i) Either minζPCpa ˝ uqpζq or maxζPCpa ˝ uqpζq is equal to a0;
(ii) pa ˝ uqpBCq X ra0 ´ s, a0 ` ss “ H.

Proposition 5.8 is proved via a contradiction argument using Proposition 5.5 and
Fish’s target-local Gromov compactness theorem [23].

5.4.7. Geodesic distance lemma. The following elementary lemma is used in the proof
of Lemma 5.17 below.

Lemma 5.9 ([24, Lemma 4.29]). Fix pη, Jq P DpY q. There exists a stable constant
ε4 “ ε4pη, Jq P p0, 1{100q such that the following holds for any ε ď ε4. Each smooth
unit-speed immersion q : r0, T s Ñ RˆY such that

(i) λp 9qptqq ą 0 for each t P r0, T s;
(ii) ε ď

ş

q
λ ď 10ε;

(iii) the set of t P r0, T s such that λp 9qptqq ă 1{2 has Lebesgue measure at most ε

satisfies the bound

distgpqp0q, qpT qq ą ε{2.

The bound in Lemma 5.9 is proved by direct computation in geodesic local coor-
dinates y1, . . . , y2n`1, with the additional condition that λ is close to dy1. We need
to state Lemma 5.9 here, instead of alongside Lemma 5.17, because the constant ε4
appears in the statement of Proposition 5.10 below.
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5.5. Proof of the connected local area bound. We now prove Proposition 5.1. In
fact, this will be deduced from a more technical bound, Proposition 5.10, which we now
state. The statement requires defining a stable constant

(31) ε5 :“ 2´24 minpc´1
2 , c´4

3 , ε4q

where c2, c3, ε4 are the stable constants from Lemmas 5.6, 5.7, and 5.9, respectively.

Proposition 5.10. Fix pη, Jq P DpY q. Let ε4 and ε5 denote the stable constants from
Lemma 5.9 and (31), respectively. There exists a stable constant c6 “ c6pη, Jq ě 1 such
that the following holds. Let u : C Ñ R ˆ Y be a compact, connected J-holomorphic
curve satisfying the following properties:

(L1) pa ˝ uqpBCq “ ta0, a1u where a1 ą a0;
(L2) a0 and a1 are regular values of the projection a ˝ u : C Ñ R;
(L3) a1 ´ a0 ě ε5{8;
(L4) supζPCpa ˝ uqpζq ´ infζPCpa ˝ uqpζq ď ε5;
(L5) Apuq ď 2´48ε4ε5;
(L6) The set of all ζ P pa ˝ uq´1pa0q such that |u˚λ|γpζq ă 1{2 has Lebesgue measure

at most ε4 in pa˝uq´1pa0q, where Lebesgue measure is defined using the pullback
metric γ.

Then for each ζ P C, we have the bound

AreaγpSε5pζqq ď c6pχpCq
2
` 1q.

Proposition 5.10 generalizes an estimate proved by Fish–Hofer (stated in [24, Proposi-
tion 4.30]). They made the additional assumption that the domain C is homeomorphic
to a compact annulus. The main novelty in the proof of Proposition 5.10 is the introduc-
tion of combinatorial and topological arguments to deal with non-annular holomorphic
curves. Let us defer the proof for the moment and first prove Proposition 5.1 assuming
that Proposition 5.10 holds. The idea is that, assuming the action of u is sufficiently
small, any point ζ P C is contained inside a surface satisfying the assumptions of Propo-
sition 5.10. In particular, to ensure that (L6) holds, we need the following technical
lemma, which asserts that most tangent planes of a low-action holomorphic curve are
nearly vertical.

Lemma 5.11. Write Q Ă R for the set of t such that i) t is a regular value of a˝u and
ii) the set of all ζ P pa ˝ uq´1ptq such that |α|γpζq ă 1{2 has Lebesgue measure greater
than ε4. Then the Lebesgue measure of Q is at most 2ε´1

4 Apuq.

Proof. This follows immediately from [24, Lemma 4.27] with parameters δ “ ε4 and
θ “ 1{2. �

We now give the proof of Proposition 5.1.

Proof of Proposition 5.1. Let u : C Ñ RˆY be a standard J-holomorphic curve. Pick
any point ζ P C. We will show that, when Apuq is sufficiently small, there exists a

compact surface rC Ă C containing ζ in the middle which satisfies (L1)–(L6) and has
Euler characteristic bounded below by χpCq. Proposition 5.10 then implies the area
bound. The proof will take 6 steps.
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Step 1: This step defines the surface pC. To define the surface, we need to assume
that Apuq ď 2´48ε4ε5. Now we choose a positive parameter r P pε5{8, ε5{4q and set
a0 :“ pa ˝ uqpζq ´ r and a1 :“ pa ˝ uqpζq ` r. We fix r so that i) both a0 and a1 are
regular values of a ˝ u and ii) the set of all ζ 1 P pa ˝ uq´1pa0q such that |u˚λ|γpζ

1q ă 1{2
has Lebesgue measure at most ε4. There exists a full measure set of r satisfying i) by
Sard’s theorem, and a positive measure set of r satisfying ii) by Lemma 5.11 and our
assumed bound on Apuq, so an r satisfying both conditions exists.

Set C0 :“ pa ˝ uq´1pra0, a1sq Ă C. Write ∆ for the disjoint union of compact compo-

nents of C z IntpC0q and set C1 :“ C0 Y∆. Let pC be the connected component of C1

containing ζ.
Step 2: This step proves the two-sided bound

(32) 2 ě χp pCq ě χpCq.

The upper bound follows from the fact that pC is connected. To prove the lower

bound, we must show χpΣq ď 0 where Σ :“ C z Intp pCq. Since C is connected and
has empty boundary, it follows from the inverse function theorem that any proper
embedding of a surface with empty boundary into C is surjective. It follows that each
connected component of Σ must have at least one boundary component. Since each

connected component of Σ intersects pC, it cannot entirely consist of components of C0

and ∆. It follows that each connected component of Σ is non-compact. We have shown
that each connected component of Σ is non-compact and has non-empty boundary, so
Σ has non-positive Euler characteristic.

Step 3: Write pu for the restriction of u to pC. This step verifies that pu satisfies (L2)
and (L3). Condition (L2) is satisfied becaause a0 and a1 are regular values of a ˝ u.
Condition (L3) is satisfied because r P pε5{8, ε5{4q.
Step 4: Assume that Apuq ă ~pη, J, ε5{8q where ~ denotes the constant from Proposi-
tion 5.8. This step verifies that pu satisfies (L1) and (L4) given this assumption.

Write

L` :“ sup
zP pC

pa ˝ uqpzq ´ sup
zPB pC

pa ˝ uqpzq, L´ :“ inf
zPB pC

pa ˝ uqpzq ´ inf
zP pC
pa ˝ uqpzq.

Note that both L` and L´ are positive by definition. By the contrapositive of
Proposition 5.8, it follows that both L` and L´ are at most ε{8. Since pa ˝ puqpζq “
pa1 ` a0q{2, we can rearrange the bounds for L` and L´ to conclude that

sup
zPB pC

pa ˝ puqpzq ě pa1 ` a0q{2´ ε5{8 ą a0, inf
zPB pC

pa ˝ puqpzq ď pa1 ` a0q{2` ε5{8 ă a1.

Since pa˝puqp pCq Ď ta0, a1u by construction, the bounds above are sufficient to conclude
(L1). To prove (L4), we use (L1) and the upper bounds for L` and L´:

sup
zP pC

pa ˝ uqpzq ´ inf
zP pC
pa ˝ uqpzq “ L` ` L´ ` pa1 ´ a0q ď ε5{8` ε5{8` ε5{2 “ ε5.

Step 5: This step verifies that pu satisfies (L5) and (L6). Both follow from our assump-
tions and the construction in Step 1.
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Step 6: By Proposition 5.10, we have the bound

(33) AreaγpSε5{16pζq X pCq “ AreaγpSε5{16pζqq ď c0pχp pCq
2
` 1q

where c0 “ c0pη, Jq ą 0 is a stable constant. The area bound then follows from (32).
�

It remains to prove Proposition 5.10 and this will take up the remainder of the paper.
As the proof gets rather technical, let us start by providing a sketch of the argument.

Outline of the proof of Proposition 5.10.
Let u : C Ñ RˆY denote a compact, connected J-holomorphic curve satisfying

(L1)–(L6). We begin by constructing a tract decomposition of u (Proposition 5.12, see
also Figure 2). Recall that a tract is a compact embedded surface with corners in C,
with horizontal boundary components mapping into level sets and vertical boundary
components mapping into gradient flow lines of the function a ˝ u. We show that,
after perturbing u slightly, the domain C can be cut up into tracts with each boundary
component having controlled length. The existence of such a decomposition, for annular
domains, is itself implicit in the first five steps of the proof of [24, Proposition 4.30],
though the explicit statement we formulate here is novel and care is required to get the
right statement. Our proof mostly follows these steps, with a new argument to take
care of the fact our domain might not be annular; an expository emphasis is also to
isolate the key constants to clarify that they are stable. We defer it to the end of the
body of the paper.

The next step after construction of the tract decomposition is to bound the area of
each tract. We show that the number of vertical and horizontal boundary components
are each controlled by χpCq (Lemma 5.13) as is the total Euler characteristic of all
the tracts (Lemma 5.14). Recalling that each horizontal boundary component has
controlled length, we conclude that each tract has a uniform bound on the length of
its entire bottom boundary, depending only on χpCq and ambient geometry. Applying
Proposition 5.5 bounds the area of each tract by a constant depending only on χpCq
and ambient geometry.

The final step is to cover Sε5pζq by a controlled number of tracts. This gives a bound
on its area since we have already bounded the area of each tract. A geodesic distance
argument that we learned from [24] implies that Sε5pζq cannot intersect both vertical
boundary components of a “rectangular” tract, defined (analogously to rectangular
strips) below. The topological lemmas mentioned above imply that most tracts are
rectangular. These results are combined with a graph-theoretic argument to prove the
desired covering bound.

5.5.1. Statement of tract decomposition. We now begin the process of making the above
outline rigorous. The first part is the statement of the tract decomposition.

Proposition 5.12. Fix pη, Jq P DpY q. Let u : C Ñ R ˆ Y be a compact, con-
nected J-holomorphic curve satisfying (L1)–(L6). There exists a fixed constant δ0 “

δ0pu, η, Jq ą 0 such that the following holds. For any sufficiently small ε ą 0, there

exists a pδ0, εq-tame perturbation pu, fq and a finite set of tracts t rCku
N
k“1 satisfying the

following properties:
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Figure 2. A schematic of the tract decomposition. One of the displayed
tracts has positive genus and several horizontal/vertical boundary com-
ponents.

(a) C “
ŤN
k“1

rCk.

(b) For each k ‰ k1, the intersection rCk X rCk1 is either empty or equal to a disjoint

union of components of Bv rCk.

(c) For each k, we have pa ˝ ruqpBh rCkq “ ta0, a1u.

(d) For each k and each component L P π0pBh rCkq such that pa˝ruqpLq “ a0, we have
ş

L
rα ă 10ε4. Moreover, if L is not a circle, then

ş

L
rα ą ε4.

(e) For each k and each component L P π0pBv rCkq, we have

length
rγpLq ď c3pa1 ´ a0q.

The simplest kinds of tracts in the decomposition are rectangular tracts, i.e. tracts
with zero genus, two horizontal boundary components, and two vertical components.
The tract decomposition could, however, contain tracts with positive genus and many
horizontal/vertical boundary components. See Figure 2 for a schematic of what the
tract decomposition might look like. We defer the proof of Proposition 5.12 for the
moment, collecting some useful lemmas about the asserted tract decomposition first.

5.5.2. Tract topology bounds. Fix pη, Jq P DpY q and a compact, connected J-holomorphic
curve satisfying (L1)–(L6). Use Proposition 5.12 to construct a perturbation pu, fq and

tract decomposition t rCku
N
k“1. As mentioned above, the tracts rCk could have complicated

topology. The next two lemmas provide some a priori topological control. Lemma 5.13
bounds the number of horizontal and vertical boundary components of each tract in
terms of χpCq.

Lemma 5.13. For each k, we have the bounds

(34) #π0pBv rCkq ď 2´ 2χpCq, #π0pBh rCkq ď 4´ 3χpCq.

Proof. Fix any k. Write M :“ #π0pBv rCkq for the number of vertical boundary compo-

nents of rCk. Let pC denote the closure of C z rCk. The proof will take 2 steps.
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Step 1: This step proves the first bound in (34). We assume without loss of generality
that M ą 2. If M ď 2, then the desired bound is immediate because by (L1) we have
χpCq ď 0. It follows from the Mayer–Vietoris sequence that

M “ χp rCkq ` χp pCq ´ χpCq.

We show χp rCkq ď 1 and χp pCq ď M{2. The upper bound on χp rCkq follows from the

fact that χp rCkq is connected and has non-empty boundary. The upper bound on χp pCq

is deduced as follows. Each connected component of pC is a tract which shares at least

at least two vertical boundary components with rCk. Therefore, pC has at most M{2

connected components. Each connected component of pC has non-empty boundary and
therefore has Euler characteristic ď 1. Combine both of these upper bounds with the
identity for M and re-arrange to get the first bound in (34).
Step 2: This step proves the second bound in (34). Each connected component of

Bh rCk is either i) a compact interval which intersects exactly two components of Bv rCk or

ii) a circle which is a connected component of BC. Any component of Bv rCk intersects

exactly two components of Bh rCk, so there are M components of the former type, which
we showed in Step 1 is bounded above by 2 ´ 2χpCq. There are at most #π0pBCq
components of the latter type. This gives the bound

#π0pBh rCkq ď 2`#π0pBCq ´ 2χpCq.

The second bound in (34) now follows from plugging in the inequality #π0pBCq ď
2´ χpCq. �

The next lemma collects an elementary identity, and some useful related observations,
used in the proof of Lemma 5.16 below.

Lemma 5.14. The Euler characteristic of the domain C satisfies the following identity:

(35) 2χpCq “
N
ÿ

k“1

p2χp rCkq ´#π0pBv rCkqq.

Moreover, for each k we have 2χp rCkq ď #π0pBv rCkq, with equality if and only if either

(a) χp rCkq “ 1 and #π0pBv rCkq “ 2;

(b) C “ rCk and χp rCkq “ #π0pBv rCkq “ 0.

Proof. The proof of the lemma will take 3 steps.

Step 1: This step proves (35). For each k, write Mk :“ #π0pBv rCkq for the number of

vertical boundary components of rCk. Write M for the number of gradient trajectories of

a˝ ru which are vertical boundary components of some rCk. It follows that 2M “
ř

kMk

because each gradient trajectory is a vertical boundary component of exactly two tracts.
The Mayer–Vietoris sequence then implies

2χpCq “
ÿ

k

2χpCkq ´ 2M “
ÿ

k

p2χpCkq ´Mkq.

Step 2: Fix any k. The next two steps prove that 2χp rCkq ď #π0pBv rCkq and character-

izes the equality cases. This step provides a proof assuming that #π0pBv rCkq “ 0, i.e.
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the tract has no vertical boundary components. By Proposition 5.12(b) it follows that
rCk is both closed and open in C. Since C is connected, it follows that C “ rCk. From

Proposition 5.12(c), we conclude that that #π0pB rCkq ě 2. This implies the bound

2χp rCkq ď 0 “ #π0pBv rCkq,

with equality if and only if χp rCkq “ #π0pBv rCkq “ 0.
Step 3: This step has the same aim as the previous step, but in the case where

#π0pBv rCkq ą 0. In this case, we must have #π0pBv rCkq ě 2, and that rCk has non-empty
boundary, so we conclude that

2χp rCkq ď 2 ď #π0pBv rCkq.

Equality holds if and only if χp rCkq “ 1 and #π0pBv rCkq “ 2. �

Remark 5.15. A tract rC is rectangular if it has zero genus, two horizontal boundary
components, and two vertical boundary components. A tract is rectangular if and only

if χp rCq “ 1 and #π0pBv rCq “ 2. The primary implication of the identity (35) is that,

barring a degenerate case, the tract rCk is rectangular for all but at most ´χpCq indices
k.

5.5.3. Tract coverings of controlled size. As above, fix a perturbed J-holomorphic curve

pu, fq and a tract decomposition t rCku
N
k“1. The following lemma asserts that local

connected components can be covered by a controlled number of tracts.

Lemma 5.16. For any point ζ P C, there exists a covering of the surface rS4ε5pζq :“
ru´1pB4ε5prupζqq by 2´ 3χpCq tracts.

Note that χpCq ď 0 by (L1), so the number 2´3χpCq from the lemma is indeed pos-

itive. Recall that a tract rC is rectangular if it has zero genus, two horizontal boundary
components, and two vertical boundary components. The proof of Lemma 5.16 requires

the following technical lemma, which asserts that rS4ε5pζq cannot intersect both vertical
boundary components of a rectangular tract. The proof of this lemma is similar to the
proof of [24, Lemma 4.35].

Lemma 5.17. For any point ζ P C and any k such that rCk is rectangular, the surface
rS4ε5pζq does not intersect both vertical boundary components of rCk.

Proof. Let rC :“ rCk denote any rectangular tract. Then rC has two horizontal and
two vertical boundary components. Let L denote the bottom horizontal boundary
component, defined rigorously as the unique horizontal boundary component contained
in pa ˝ ruq´1pa0q. Then L is a compact interval connecting the two vertical boundary

components. Write BL “ ζ` ´ ζ´ where ζ˘ are distinct points in rC. Write γ˘ for the
vertical boundary components intersecting L at ζ˘ respectively. Write

d :“ inf
z`Pγ`
z´Pγ´

distgprupz`q, rupz´qq
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for the extrinsic distance between γ` and γ´. Since both γ` and γ´ have length at
most c3pa1 ´ a0q by Proposition 5.12(e), it follows from the triangle inequality that

d ě distgprupζ`q, rupζ´qq ´ 2c3pa1 ´ a0q.

Let q : r0, T s Ñ C denote the unique unit-speed parameterization of L such that
qp0q “ ζ´ and q` “ ζ`. Apply (L6), Proposition 5.12(d), and Lemma 5.9 to the curve
rq :“ ru ˝ q to bound distgprupζ`q, rupζ´qq from below. We deduce the bound

d ě ε4{2´ 2c3pa1 ´ a0q.

The right-hand side is seen to be strictly greater than 8ε5 using (L4) and the bound
ε5 ď 2´24 minpc´3

3 , ε4q. We conclude that γ` and γ´ have extrinsic distance greater than

8ε5 from each other. By the triangle inequality, they cannot both intersect rS4ε5pζq for
any choice of ζ P C. �

Lemma 5.16 is proved by combining Lemmas 5.14 and 5.17 with a combinatorial
argument.

Proof of Lemma 5.16. Let pC1, . . . , pCD denote a minimal-size cover of rS4ε5pζq by tracts.
Our goal is to prove the bound D ď 2 ´ 3χpCq. We assume without loss of generality
that D ě 2. The proof will take 4 steps.

Step 1: Write Z for the number of indices i such that pCi is rectangular. This step
observes that Z ě D ` χpCq. This is a direct consequence of Lemma 5.14 and Re-
mark 5.15. It is important that we assume D ě 2 here, to avoid the degenerate case
stated in Lemma 5.14(b).
Step 2: This step constructs a connected graph G as follows. The vertices are

t1, . . . , Du. For any i ‰ j, we add an edge between them if the tracts pCi and pCj
share a vertical boundary component. The connected surface rS4ε5pζq intersects each

of the tracts pCi since they form a cover of minimal size. This implies that
Ťd
i“1

pCi is
connected, which in turn implies that G is connected.

Step 3: Let i be any vertex such that pCi is rectangular. This step shows that i is a

vertex of degree 1, which is equivalent to the assertion that rS4ε5pζq intersects exactly one

vertical boundary component of pCi. This assertion follows from applying Lemma 5.17

to the rectangular tract pCi and the fact that G is connected.
Step 4: This step uses Lemma 5.14 and some basic graph theory to prove that D ď

2 ´ 3χpCq. For each i P t1, . . . , Du, let Ni denote the degree of the vertex i and Mi

denote the number of vertical boundary components of pCi. Note that Ni ď Mi for

any i. By Step 3, we have Ni “ 1 and Mi “ 2 when pCi is rectangular, so we get the
improved bound Ni ďMi ´ 1 in this case. We deduce the inequality

(36) 2χpCq ď
D
ÿ

i“1

p2χp pCiq ´Miq ď 2D ´ Z ´
D
ÿ

i“1

Ni.

The first inequality uses (35) and the assertion, proved in Lemma 5.14, that every
term on its right-hand side is ď 0. The second inequality uses the observed bounds for

each Mi above and the bound χp pCiq ď 1. The last two terms on the right are controlled
by D and χpCq. We proved that Z ě D ` χpCq in Step 1. Since G is connected, it
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has at least D ´ 1 edges. The sum
řD
i“1Ni is twice the number of edges of G, so we

conclude that
řD
i“1Ni ě 2D ´ 2. Plug these bounds into (36) to get an upper bound

on D:
2χpCq ď 2D ´ pD ` χpCqq ´ p2D ´ 2q ñ D ď 2´ 3χpCq.

�

5.5.4. Proof of Proposition 5.10. We can now explain the proof of the technical bound
Proposition 5.10, contingent on Proposition 5.12.

Proof of Proposition 5.10. Use Proposition 5.12 to construct a pδ, εq-tame perturbation

pu, fq and a tract decomposition t rCku
N
k“1. Recall that ru denotes the perturbed map

and that rγ “ ru˚g denotes the perturbed metric. The proposition states that ε ą 0 can
be chosen to be arbitrarily small; we will choose ε to be smaller than ε5. This implies

that distgprupζ
1q, upζ 1qq ă ε5 for any ζ 1 P C. It follows from this that Sε5pζq Ď rS4ε5pζq.

Using this observation and Lemma 5.4, it follows that

AreaγpSε5pζqq ď AreaγprS4ε5pζqq ď 2 Area
rγprS4ε5pζqq.

So, to complete the proof it suffices to bound the area of rS4ε5pζq with respect to
the metric rγ. By Lemma 5.13, each tract has at most 4 ´ 3χpCq horizontal boundary
components, and by Proposition 5.12(d) it follows that

ż

Bh
rCk Xpa˝ruq´1pa0q

rα ď 10ε4p4´ 3χpCqq

for each k. The area bound in Proposition 5.5 shows for each k the bound

Areaγp rCkq ď 2 Area
rγp rCkq ď c0p1´ χpCqq

where c0pη, Jq ą 0 is stable and k-independent. By Lemma 5.16, rS4ε5pζq is covered by
2´ 3χpCq tracts, and the desired area bound follows. �

5.5.5. Proof of tract decomposition. To conclude, we need to provide the promised proof
of Proposition 5.12, which will take up the remainder of the paper. As we explained in
our earlier outline of our arguments, a large part of the proof repeats arguments found
in [24], so we only provide sketches for much of this part. On the other hand, many
estimates from [24] and many of the assumptions (L1)–(L6) are used in the proof, and
it is crucial to keep careful account of the relevant constants, so even in the sketched
parts of the proof we are very precise about the estimates and assumptions used.

Proof of Proposition 5.12. The proof of Proposition 5.12 is simple when Apuq “ 0,
and we begin by explaining this: in this case, the map u is a branched covering map
from C onto ra0, a1s ˆ γ, where γ is a closed orbit of Rη. Cut up γ into intervals
tI`uM`“1 with length in p3ε4, 4ε4q (or leave it be if it is shorter than that) such that the
segments ra0, a1s ˆ tzu do not intersect a critical value of u for any ` and any endpoint

z P B I`. For each `, define rC` :“ u´1pra0, a1sˆI`q. The set t rC`u
M
`“1 is the desired tract

decomposition.
Thus, we can assumeApuq ą 0, which will be a standing assumption for the rest of the

proof. Fix pη, Jq P DpY q and a compact, connected J-holomorphic curve u : C Ñ RˆY
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satisfying (L1)–(L6). The proof takes 5 steps. The first four steps closely follow the
first five steps in the proof of [24, Proposition 4.30]. The stable constants c2, c3, ε4 from
Lemmas 5.6, 5.7, 5.9, respectively, and the stable constant ε5 from (31) will appear
frequently.
Step 1: This step fixes a pδ, εq-tame perturbation pu, fq where δ and ε satisfy suitable
bounds. We require δ to be smaller than a stable constant depending on the map u.
We also require δ ! c2Apuq, which is only possible because we are assuming Apuq ą 0.
We then require ε to be smaller than a constant depending on u and δ and smaller than
the constant ε5. The proof that such a perturbation exists is given in Step 1 of the
proof of [24, Proposition 4.30].
Step 2: Steps 2–4 will show that for a large measure set of initial conditions ζ P B´h C,
there exists a solution of the gradient flow equation

(37) q : r0, T s Ñ C, q1psq “ grad
rγpa ˝ ruqpqpsqq, qp0q “ ζ

terminating on B`h C. As in [24], we define some relevant sets:

C :“ tζ 1 P Critpuq | rpζ 1q “ δ{2u,

D :“ tζ 1 P Critpuq | rpζ 1q ă δ{2u.
(38)

The set D is a union of small disks of radius δ{2, centered at the critical points of u,
and the set C is the union of the boundaries of these disks.

Step 2 and its proof in particular follows Step 2 of the proof of [24, Proposition 4.30].
Its goal is to show that solutions to (37) only pass through D for a small rα-measure set
of initial conditions. Calling this set of initial conditions D´ Ď B´h C, we can prove the
bound

(39)

ż

D´
rα ď 4c2Apuq.

Here is an outline of the proof of (39). We note that any gradient flow line starting
from a point in D´ must intersect the set C 1. Then, using the gradient flow, we construct
a disjoint union of strips such that i) their top boundaries lie in C, ii) their bottom
boundaries lie in D´ and iii) the total rα-measure of the bottom boundaries is close to
that of D´. The rα-measure of C is À δ, which is by Step 1 much less than c2Apuq.
Then (39) follows from the height bound (L4) and Lemma 5.6.
Step 3: This step follows Step 3 of [24, Proposition 4.30] and its proof. The perturbed
height function a ˝ ru is Morse on C z D. It follows that a ˝ ru has finitely many critical
points in C z D and each one is non-degenerate. For each k P t0, 1, 2u, write Mk for
the set of index-k critical points of a ˝ ru in C z D. The goal of this step is to show,
for each k, that the set of initial conditions in B´h C whose gradient flow lines limit to a
point inM0,M1, orM2 is small. It is clear that only a finite set F´ Ă B´h C of initial
conditions have gradient flow lines limiting to a point in M0 or M1, so it remains to
control the rα-measure of the set of initial conditions whose gradient flow lines limit to
a point in M2.

We denote this set by E´ Ă B´h C and assert the bound

(40) |

ż

E´
rα| ď 4c2Apuq.
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The proof of (40) is similar in style to the proof of (39). By the Morse lemma,
there exists for each point z PM2 a circle Cz of arbitrarily small length, such that any
gradient flow line limiting to z intersects Cz exactly once transversely. We choose such
circles Cz such that their total length is at most c2Apuq. Using the gradient flow, we
construct a disjoint union of strips such that i) their top boundaries lie in Cz for some
z PM2, ii) their bottom boundaries lie in E´ and iii) the total rα-measure of the bottom
boundaries is close to that of E´. Then (40) follows from the height bound (L4) and
Lemma 5.6.
Step 4: This step follows Steps 4 and 5 of [24, Proposition 4.30] and their proofs. It
shows that for each closed interval I Ă B´h C satisfying

ż

I
rα ě ppa1 ´ a0q

´1
` 10c2qApuq

there exists a solution q : r0, T s Ñ C to the equation

q1psq “ grad
rγpa ˝ ruqpqpsqq

such that qp0q P I, qpT q P B`h C, and

length
rγpqpr0, T sqq ď c3pa1 ´ a0q.

To prove this claim, we define T Ă B´h C to be the complement of the setD´Y E´YF´.
For any point ζ P T , there exists a solution q to (37) such that qp0q “ ζ and qpT q P B`h C.
It follows from (39) and (40) that

ż

B
´
h C z T

rα “

ż

D´Y E´YF´
rα ď 8c2Apuq.

It follows that there exists a finite set tT kuNk“1 of pairwise disjoint intervals, each con-
tained in T , such that

(41)
N
ÿ

k“1

ż

T k

rα ě

ż

B
´
h C

rα ´ 10c2Apuq.

Now write I 1 :“ I X YNk“1 T k. It follows from (41) that
ż

I1
rα ě

ż

I
rα ´ 10c2Apuq ě pa1 ´ a0q

´1Apuq.

The strips associated to the intervals T kX I 1 satisfy the assumptions of Lemma 5.7.
The only nontrivial assumptions to check are (iii) and (iv). Assumption (iii) follows
from (L4) and Assumption (iv) follows from the inequality above. Applying Lemma 5.7
produces the desired gradient flow line.
Step 5: This step uses the result of the previous step to complete the proof of the
proposition. Unlike the other steps, this step does not have any close counterpart in
the proof of [24, Proposition 4.30]. Choose a finite cover tLjuMj“1 of B´h C satisfying the
following properties:

(1) Each Lj is homeomorphic to a closed interval or a circle.
(2)

ş

Lj
rα ă 5ε4.

(3) If Lj is homeomorphic to a closed interval, then
ş

Lj
rα ą 3ε4.
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(4) For any j ‰ j1, the interiors of Lj and Lj1 (relative to B´h C) are disjoint.

For any j such that Lj is homeomorphic to an interval, we define a sub-interval
pLj Ă Lj as follows. Write ζ´j and ζ`j for the left and right endpoints of Lj with respect

to the orientation defined by rα. Fix interior points ζ0
j , ζ

1
j P Lj such that ζ0

j is to the left

of ζ1
j and the following holds. Write L0

j , L1
j , and L2

j for the sub-intervals with oriented

boundaries ζ0
j ´ ζ

´
j , ζ1

j ´ ζ
0
j , and ζ`j ´ ζ

1
j , respectively. Then we require

ż

Li
j

rα P pε4, 2ε4q

for each i P t0, 1, 2u, and set pLj :“ L1
j .

Note that by (L3), (L5), and the bound c2 ď 224ε´1
5 (see (31)), we have the bound

ppa1 ´ a0q
´1 ` 10c2qApuq ď ε4. Therefore, the interval pLj satisfies the required length

lower bound in Step 4. It follows from Step 4 that for each j P t1, . . . ,Mu such that Lj is

homeomorphic to an interval, there exists a point ζj P pLj and a gradient flow trajectory
qj : r0, Tjs Ñ C such that qjp0q “ ζj, qjpTjq P B

`
h C, and the length of qjpr0, Tjsq is at

most c3pa1 ´ a0q.
Set

9C :“ C z Yj qjpr0, Tjsq

and write t 9Cku
N
`“1 for the connected components of 9C. For each k P t1, . . . , Nu, the

closure rCk of 9Ck relative to C is a tract. We verify that t rCku
N
k“1 satisfy the properties of

Proposition 5.12. Proposition 5.12(a–c) are evident from the construction. The upper

bound in Proposition 5.12(d) follows from the fact that any L P π0pB
´
h
rCkq is contained

in the union of at most two of the sets Lj. The lower bound in Proposition 5.12(d)
follows from the fact that if L is not a circle, then L must contain either L0

j or L2
j for

some j. Proposition 5.12(e) follows from the fact that for each k and each component

L1 P π0pBv rCkq, there exists some j such that L1 “ qjpr0, Tjsq, and therefore L1 has length
at most c3pa1 ´ a0q.

�

Appendix A. Verifying assumptions

This short appendix colllects some elementary arguments verifying that important
classes of maps and flows satisfy the assumptions of our main results. In the case of
surface maps, we show that Hamiltonian surface diffeomorphisms and rational area-
preserving 2-torus diffeomorphisms are monotone. We start with Hamiltonian diffeo-
morphisms.

Lemma A.1. Any Hamiltonian diffeomorphism of a closed, oriented surface Σ is mono-
tone.

Lemma A.1 follows immediately from the next lemma and the easily verified fact
that the identity map is monotone.
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Lemma A.2. Let φ and φ1 be a pair of Hamiltonian isotopic area-preserving diffeo-
morphisms of a closed, oriented surface Σ equipped with an area form ω. Then φ1 is
monotone if and only φ is.

Proof. Choose a Hamiltonian function H : R {ZˆΣ Ñ R whose time-one Hamiltonian
flow is φ´1φ1. Write tψtutPR for the Hamiltonian flow of H. We use this choice to
identify the mapping torii of φ and φ1:

fH : jφ » Yφ1 , pt, pq ÞÑ pt, pψtq´1
ppqq.

We compute

f˚Hc1pVφ1q “ c1pVφq, f˚Hrωφ1s “ rf
˚
Hωφ1s “ rωφ ` dH ^ dts “ rωφs.

It follows from this computation that φ1 is monotone if and only if φ is. �

Next, we show that any rational area-preserving torus diffeomorphism is monotone.

Lemma A.3. Write T2 :“ pR {Zq2 and let ω :“ dx ^ dy denote the standard area
form. Any area-preserving diffeomorphism φ : T2 Ñ T2 has c1pVφq “ 0. Therefore, if φ
is rational, then it is monotone.

Proof. Fix any area-preserving diffeomorphism φ : T2 Ñ T2. For any matrix A P

SLp2,Zq, write φA for the torus map w ÞÑ Bw. Any area-preserving diffeomorphism is
isotopic through area-preserving diffeomorphisms to some φA. Such an isotopy identifies
mapping torii and Chern classes. Therefore, it is sufficient to prove the lemma under
the assumption that φ “ φA for some A P SLp2,Zq.

Write rpAq :“ rankpkerpA ´ Idqq. This is an integer between 0 and 2, inclusive. We
give separate proofs that c1pVφq “ 0 depending on the value of rpAq. If rpAq “ 0, then
it follows from the Mayer–Vietoris sequence that b2pYφq “ 1 ` rpAq “ 1 and that the
second homology group of Yφ is generated by a torus fiber. The class c1pVφq has zero
pairing with a torus fiber, so c1pVφq “ 0.

Now, assume rpAq ě 1. Then the matrix A fixes some nonzero vector v P R2.
Therefore, the differential of φ “ φA fixes the constant vector field v on T2. This vector
field defines a non-vanishing section of the vertical tangent bundle Vφ. We conclude
that c1pVφq “ 0. �

Next, we consider flows on 3-manifolds. We show that the geodesic flow of a Finsler
surface is the Reeb flow of a torsion contact form.

Lemma A.4. Let F be a closed Finsler surface. Then there exists a torsion contact
form α on the unit tangent bundle SF whose Reeb vector field generates the geodesic
flow.

Proof. We recall, following [21], how to realize a Finsler geodesic flow as a Reeb flow of
a contact form. Let v : TF Ñ R denote the Finsler norm and set H :“ v2{2. Define a
1-form α on TF by the local coordinate expression

ř2
i“1 BqiH dpi, where pi and qi “ Bpi

denote local coordinates on the base and fiber. It is proved in [21, Section 2] that α
restricts to a contact form on SF and its Reeb vector field generates the geodesic flow.

Now, we claim that, when we endow it with a complex structure J , the 2-plane bundle
ξ :“ kerpαq has torsion Chern class. Our proof strategy is to construct a flat J-linear
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connection on ξ. This suffices to prove the claim, because the cohomology class of the
curvature is equal to the image of c1pξq in H2pSF ;Rq. Write ` for the real line bundle
defined as the tangent bundle along the fibers of SF . It follows from the definition of
α that ` is a sub-bundle of ξ, so ξ splits as an internal direct sum ` ‘ J` of real line
sub-bundles.

We observe that the real line bundle ` admits a flat connection ∇; this connection
induces a candidate connection ∇ on ξ as follows. Any section s of ξ splits uniquely as
a sum s0 ` Js1 where s0 and s1 are sections of `. Then, define ∇s :“ p∇s0q ` Jp∇s1q.
The connection ∇ is J-linear by definition. It remains to prove that it is flat. Observe
that ∇ is flat if and only if the identity of operators

∇V∇W ´∇W∇V ´∇rV,W s “ 0

holds for any pair of vector fields V and W on SF . Testing the left-hand side against
any section s “ s0 ` Js1, we verify this identity directly:

´

∇V∇W ´∇W∇V ´∇rV,W s
¯

¨ s “
´

∇V∇W ´∇W∇V ´∇rV,W sq
¯

¨ s0

` J ¨
´

∇V∇W ´∇W∇V ´∇rV,W s
¯

¨ s1

“ 0.

The first equality follows from expanding s “ s0 ` Js1 and simplifying. The second
equality follows from the fact that ∇ is a flat connection on `. �
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