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ABSTRACT. We prove that for any monotone area-preserving diffeomorphism of a
closed surface, or Reeb flow on a closed contact three-manifold with torsion Chern
class, the complement of a compact invariant set is never minimal. As a corollary, we
obtain that, under the same assumptions, there are infinitely many distinct proper
compact invariant sets whose union is dense in the manifold. No genericity assump-
tions are required. The former class of systems includes all Hamiltonian diffeomor-
phisms of closed surfaces and the latter includes all Finsler geodesic flows on closed
surfaces. We can view our results as generalizations, in the smooth symplectic setting,
to higher genus surfaces and three-manifolds of results of Le Calvez—Yoccoz, Franks,
and Salazar for homeomorphisms of the two-sphere. Our results also give such a
generalization for Finsler geodesic flows on closed surfaces.

Along the way, we prove a result, in any dimension, of potentially independent in-
terest, detecting invariant sets via sequences of low-action pseudoholomorphic curves
with controlled topology; as a corollary, this generalizes Ginzburg—Giirel’s “crossing
energy bound” for Floer cylinders to punctured holomorphic curves, of arbitrary topol-
ogy, in symplectizations, resolving an open question posed by them. Another feature
of the argument which also might be of independent interest is a probabilistic result
stating that almost all ECH/PFH U-map curves have Euler characteristic at least —2
under the above assumptions.
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1. INTRODUCTION

1.1. Le Calvez-Yoccoz phenomena. The detection and classification of compact
invariant sets is a fundamental question in dynamical systems. For example, a natural
question asks how much of the parameter space is seen by a given trajectory; the closure

of any such trajectory is a compact invariant set. For diffeomorphisms of the circle
1



2 DAN CRISTOFARO-GARDINER AND ROHIL PRASAD

and smooth flows on the plane, the theorems of Denjoy [20] and Poincaré-Bendixson
[5] give a nearly complete picture. The situation in higher-dimensions, on the other
hand, is much more mysterious, with a far greater diversity in the possible behaviors.
This paper is about the conservative setting, in one dimension higher than Denjoy
and Poincaré-Bendixson: area-preserving diffeomorphisms of 2-manifolds and volume-
preserving flows on 3-manifolds.

A first observation is that without further assumptions, there might be no interesting
invariant sets at all:

Example 1.1. Let f be an irrational translation of a two-torus; then, this is area-
preserving, but the only compact invariant set is the entire manifold. One can similarly
consider an irrational volume-preserving flow on the three-torus.

The main theme of our paper is that when one adds some further natural conditions
of a symplectic nature, the situation changes completely. Our inspiration comes from
the following result of Le Calvez-Yoccoz. Recall that an invariant set U of a map or
flow, closed or not, is called minimal if the orbit of each initial condition p € U is dense
in U. A groundbreaking 1997 paper by Le Calvez—Yoccoz [42], improving on an earlier
result of Handel [31], showed that for any homeomorphism of S? the complement of an
invariant finite set of points is never minimal. Their result resolved the 2-dimensional
case of an old question of Ulam from the Scottish Book [43], p. 208].

Our first results give a generalization of this, in the smooth symplectic setting, to
higher-genus surfaces and 3-manifolds.

Theorem 1. Let ¥ be a closed, oriented surface and let ¢ : X — X be any monotone
area-preserving diffeomorphism. Then for any proper compact invariant set A < X3, the
complement ¥\ A is not minimal.

Theorem 2. LetY be a closed, oriented 3-manifold equipped with a co-oriented contact
structure & with torsion first Chern class. Let A be any contact form defining & and
let ¢ = {P'}ier denote the Reeb flow of X. Then for any proper compact invariant set
A c Y, the complement Y \ A is not minimal.

What is novel about these theorems in the context of conservative dynamics is the
level of generality. The simplest kinds of compact invariant sets are periodic orbits:
this means that the invariant set is homeomorphic to a circle (in the case of flows) or
a finite set of points with a transitive action (in the discrete setting). Previous results
have established theorems like the above under strong dynamical assumptions such
as the existence of only finitely many periodic orbits [29, [0]; we discuss this further in
Remark[I.6] That these theorems hold much more generally, at least in low-dimensions,
seems to us to be a quite new and perhaps unexpected phenomenon.

The assumptions of these theorems also apply to broad classes of systems in Hamil-
tonian dynamics. For example, any Hamiltonian diffeomorphism of a closed symplectic
surface is monotone. As we will see, any geodesic flow on a closed Finsler surface
corresponds to a Reeb flow with torsion first Chern class. Any Reeb flow on a ratio-
nal homology 3-sphere of course also has torsion Chern class, as does any Reeb flow
on a closed 3-manifold with contact structure supporting a contact Anosov flow [32
Theorem 4.1].
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Theorem [1I] and Theorem [2| guarantee the existence of an abundance of compact
invariant sets. Moreover, the compact invariant sets are spread out in the manifold.
For example, we obtain the following corollaries.

Corollary 1.1. Under the assumptions of Theorem [1], the map ¢ has infinitely many
distinct proper compact invariant sets whose union is dense in 3.

Corollary 1.2. Under the assumptions of Theorem[3, the Reeb flow has infinitely many
distinct proper compact invariant sets whose union is dense in Y .

Corollary [I.1] and [I.2] are clearly false if one requires the compact invariant sets to
be periodic orbits. For example, an irrational rotation of a two-sphere satisfies the
assumptions of Theorem [T but has just two periodic points.

Remark 1.3. The generality of the above theorems strongly precludes the space of
possible improvements, without the imposition of additional restrictions. For example,
one could hypothetically ask whether the invariant sets we detect support interesting in-
variant measures. However, Anosov—Katok famously constructed [2] an area-preserving
diffeomorphism of S? whose invariant measures are as simple as possible: the only er-
godic invariant measures are a pair of fixed points and the area measure. Corollary
applies to the Anosov—Katok example to produce many distinct proper compact in-
variant sets, but they all must therefore support essentially the same ergodic invariant
measures.

Remark 1.4. The novelty of Theorems [I] and [2] is that they make no genericity as-
sumptions at all. Indeed, prior results on the closing lemma (see [40, [3], 19 22]) show
that a C*-generic system of the type we consider has a dense set of periodic points.

Remark 1.5. The arguments in Le Calvez - Yoccoz are local in nature, and produce
for example invariant sets near any irrationally elliptic fixed point; see for example the
exposition in [9]. As we will see, the invariant sets we detect arise from fundamentally
different considerations: roughly speaking, they produce invariant sets near any proper
compact invariant set containing all periodic orbits, hence have a global character.

1.2. Geodesic flows on surfaces. In the setting of Riemannian or Finsler manifolds,
it is natural to ask how much of the manifold is visited by a given geodesic. Perhaps
the simplest dichotomy in this direction is between the dense and non-dense geodesics.
At one extreme, one could imagine that every geodesic is dense; this can not occur,
because a closed geodesic can not be dense, but it is natural to wonder how far off it is
from the actual behavior. In fact, for surfaces we have the following result contrasting
this sharply:

Theorem 3. Let F' be any closed Finsler surface. Then there exists an infinite collection
G of geodesics such that

(a) v(R) is not dense in F for any v € G;
(b) The union | .5 v(R) is dense in F';

(c) The closures v(R) and v'(R) are distinct for any pair of distinct elements v, €
G.
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In other words, a dense set of points have a non-dense geodesic going through them;
and, moreover, these geodesics all visit different sections of the surface.

In the negative curvature case, or the generic case, the above theorem is well-known,
since in fact the stronger statement holds that the closed geodesics are dense. However,
we make no curvature assumption at all, and in this generality this property seems to
be quite new. Moreover, the theorem is false if one requires the geodesics to param-
eterize closed loops. For example, there exist Finsler metrics on S? with exactly two
geometrically distinct closed geodesics [2].

In a different direction, our methods also give a new proof of an important recent
result of Contreras—Mazzucchelli [12], giving conditions for a geodesic flow to be Anosov.

We discuss this further in §1.6.1| below.

1.3. The work of Franks and Salazar. In fact, Theorem 1| and Theorem [2] follow
from slightly more general (but slightly harder to state) results, which we now explain.
This level of generality is also important for the applications to geodesic flows above.

Shortly after the work by Le Calvez—Yoccoz, Franks discovered the following refine-
ment of their theorem. Recall that a compact invariant set A of a homeomorphism or
flow on a compact manifold is called locally mazimal if any sufficiently C%-close com-
pact invariant set must be contained in A. If a compact invariant set A is not locally
maximal, then any neighborhood U of A contains a point z ¢ U\ A with orbit closure
contained in U. Franks [26] showed that for any homeomorphism of S?, the union of
periodic points is either infinite or not locally maximal. A subsequent refinement in
the conservative case by Salazar [49] showed that for any area-preserving homeomor-
phism of S? and any compact invariant set A € S? containing all periodic points, either
A = S? or A is not locally maximal. We are able to generalize these results in the
smooth symplectic case as well:

Theorem 4. Let 3 be a closed, oriented surface and let ¢ : X — X be any monotone
area-preserving diffeomorphism. Then for any compact invariant set A € X containing
all periodic orbits of ¢, either A =3 or A is not locally maximal.

Theorem 5. Let Y be a closed, oriented 3-manifold equipped with a co-oriented contact
structure & with torsion first Chern class. Let A be any contact form defining & and
let {¢'}ier denote the Reeb flow of N\. Then for any compaact invariant set A <Y
containing all periodic orbits of {¢'}ier, either A =Y or A is not locally mazimal.

As we will explain, Theorem [4] implies Theorem [I} The analogous chain of reasoning
holds starting from Theorem [5]

Remark 1.6. Related results for Hamiltonian diffeomorphisms of CP" with finitely
many periodic points and dynamically convex Reeb flows on S?"*! with finitely many
closed orbits were respectively proved by Ginzburg-Giirel [29] and Cineli-Ginzburg—
Giirel-Mazzucchelli [9]. There is no dimensional restriction in these results, and we say
a bit more about this in connection to our results in §I.6.4]

Remark 1.7. Le Calvez—Yoccoz, Franks, and Salazar used very different methods from
ours. Le Calvez—Yoccoz and Franks argue by contradiction with the key technical step
that after possibly iterating the map, the Lefschetz index of the fixed point set is < 0,
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contradicting the condition that y(S?) > 0; Salazar’s argument also uses this. Since
any oriented surface of higher genus does not have positive Euler characteristic, we
do not know how to approach Theorem [4| using their methods; the case of flows on
three-manifolds via their methods is also unclear to us.

Remark 1.8. Our proof of Theorem [3, after making minor modifications, yields a
geodesic flow analogue of Franks’ theorem: either the union of closed geodesics is dense
in I’ or we can find non-dense geodesics which are arbitrarily nearby its closure.

1.4. Invariant sets from low-action holomorphic curves. We now explain a gen-
eral theorem that we prove, applicable in any dimension and of independent interest,
for extracting invariant sets; it is used to prove all of the above dynamical results. One
can view this as a global detection method via “low-action” holomorphic curves.

1.4.1. The setup. We work in the general setting of punctured holomorphic curves in
symplectizations R xY over framed Hamiltonian manifolds. A framed Hamiltonian
structure on a smooth, oriented manifold Y of dimension 2n+1 > 3 is a pair n = (A, w)
of a 1-form X\ and a closed 2-form w such that A A w™ > 0. The Hamiltonian vector field
R, is defined implicitly by

AR,y =1, w(R,,—)=0.

The flow of R, preserves w and the volume form A A w". This setup is an abstraction of
many important classes of systems in symplectic and conservative dynamics, including
mapping torii of symplectic diffeomorphisms, Reeb and stable Hamiltonian flows, and
volume-preserving flows on three-manifolds. For example, if w = d\, then X is a contact
form and R, is its Reeb vector field.

We follow the classical setup of holomorphic curve theory in symplectizations intro-
duced by Hofer. Fix a Riemann surface (C,7). A J-holomorphic curve is a proper
smooth map u : C' — R xY satisfying the Cauchy—Riemann equation

JoDu=Duoj

where J is an n-adapted almost-complex structure on R xY. This is a translation-
invariant almost-complex structure restricting to a compatible almost-complex struc-
ture on the symplectic bundle (ker(\),w) and sending —R,, to the vector field J, defined
by the R-coordinate on R xY. We say u is standard if the domain C' is homeomorphic
to the complement of a finite subset of a closed Riemann surface. The geometry of a
J-holomorphic curve in R xY is controlled by the action and Hofer energyﬂ, defined

respectively as
Au) = J U w, E(u) := supf u*.
C s€ER JCru=1({s}xY)

The action controls how far on average the tangent planes of C, which are J-invariant,
are from the vertical plane spanned by J, and R,. Therefore, a low-action holomorphic
curve should approximate the vector field R, very well. The Hofer energy is, informally,
the maximum length of the level sets of C'in R xY.

IThis is not Hofer’s original definition. Finiteness of £ (C), however, is equivalent to finiteness of
the original Hofer energy.



6 DAN CRISTOFARO-GARDINER AND ROHIL PRASAD

1.4.2. The limit set. A key object in our method is the “limit set” of a sequence of
holomorphic curves in a symplectization, which we now introduce. For any closed,
smooth, odd-dimensional manifold Y, write D(Y") for the space of pairs (1, J) where 7 is
a framed Hamiltonian structure and J is an n-adapted almost-complex structure. Equip
it with the topology of C* convergence in both 1 and J. Fix a pair (1, J) € D(Y') and
a sequence {(ny, Ji)} in D(Y) converging to (n,J). Fix a sequence {uy : Cy — R xY'}
where wuy, is Ji-holomorphic for each k.

It is convenient to define X := (—1,1) x Y, and to define for any s € R the shift map
T : RxY — R xY, mapping (¢,y) — (t — s,y). Define the limit set X of the sequence
{ur} to be the collection of all closed subsets K < (—1,1) x Y arising as subsequential
Hausdorff limits as k — oo of height-2 slices of uy. That is, there exists a sequence {sy}
of real numbers such that a subsequence of

Ty, - (uk(Ck) A (sp— 1,80+ 1) x Y) c X

converges in the Hausdorff topology to K. The limit set X is a subset of (X)), the
space of all closed subsets of X equipped with the topology of Hausdorff convergence.
See § for a definition of the Hausdorff topology.

The limit set has the following very important connectivity property:

Proposition 1.9. Fiz a closed, smooth, oriented, odd-dimensional manifold Y and fix
a sequence {(nx, Jx)} converging in D(Y') to a pair (n,J). Let {uy : Cy, — Y} denote a
sequence where uy is a standard Jy-holomorphic curve for each k. Then there exists a
subsequence {uy,} whose limit set X' is connected with respect to the Hausdorff topology.

A harder theorem, which we prove, is the following:

Theorem 6. Fizx a closed, smooth, oriented, odd-dimensional manifold Y and a se-
quence {(Nk, Ji) }k=1 converging in D(Y') to a pair (n,J). Let {ug : Cx — Y }i=1 denote
a sequence where uy is a standard Jy-holomorphic curve for each k and let X < K(X)
denote their limit set. Assume in addition that

lim A(ux) =0 and inf x(Cg) > —o0

k—o0 k

Then every set A € X is equal to (—1,1) x A, where A € K(Y) is non-empty and

invariant under the flow of the Hamiltonian vector field R,,.

The noveltyP] of Theorem [f]is that it extracts invariant sets without requiring that the
Hofer energies {€(ux)} admit a finite k-independent upper bound, or even that any of
the Hofer energies £(uy) are finite. Bounds on Hofer energy are a standard assumption
in the vast majority of the symplectic field theory literature; the only exceptions known
to us are [24, [47] about “feral” curveﬂ Our proof of Theorem |§| is inspired by, and
builds on, ideas in these works, though one should emphasize that the setting here, of

%Indeed, in the case where sup,- €(ux) < E for some finite £, Theorem |§| follows from the original
work of Hofer, and moreover one obtains the stronger conclusion that any A € X is a cylinder over a
finite union of periodic orbits.

3Loosely speaking, these are curves with unbounded Hofer energy; they do not play a role in our
arguments.
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a sequence of standard curves with action tending to zero, is quite different. As we will
see in the proof, this leads to new topological challenges, with an essential point being
that the curves we accommodate can have genus and many punctures. Indeed, it is
essential for our arguments to be able to allow such curves.

Remark 1.10. The Euler characteristic x(Cj) is finite for each k because we are
assuming each curve is standard. The assumption of a finite k-independent lower bound
on x(Cy) is essential for our proof of Theorem [f] Removing this assumption would be
of interest: it would shorten the proofs of our main dynamical Theorems {4 and [5| and
extend them to any rational area-preserving diffeomorphism of a closed surface and any
Reeb flow on a closed 3-manifold, respectively.

Remark 1.11. Fish-Hofer in [24], Definition 4.46] also define a kind of limit set (the “x-
limit set”). Our notion of limit set differs from theirs in several ways which are crucial for
our arguments. In particular, [24, Definition 4.46] has an asymptotic condition, which
we do not want to require for our applications. And, their limit set is a single invariant
set, while ours is a connected family of invariant sets. This distinction is actually a
key innovation, since the connectedness is exploited to show that such families contain
many distinct invariant sets.

1.5. The crossing energy theorem in symplectizations. To explain our final new
result, which is more technical, we need to recall the “crossing energy theorem” for
Hamiltonian diffeomorphisms. The crossing energy theorem is a powerful tool intro-
duced by Ginzburg—Giirel [27]. Recall that a neighborhood U of a locally maximal
compact invariant set A of a homeomorphism or flow is isolating if any compact invari-
ant set A’ < U is a subset of A. The crossing energy theorem asserts that if A is a locally
maximal invariant set of a Hamiltonian diffeomorphism (for example, a hyperbolic fixed
point), U is an isolating neighborhood, and V' < U is such that V < U, then any “Floer
cylinder” crossing the shell U\V must have a uniform lower bound on its Floer energy.
Analogues have been established for generating functions [I], gradient flow lines of the
energy functional on loop space [30], and Floer cylinders in symplectic homology [9]. It
is central to many results, such as Conley conjecture type results on the multiplicity of
periodic points [4, 27, 28], dynamics of Hamiltonian and Reeb pseudorotations [29, [9],
and the study of topological entropy via barcode invariants [8, [30].

Thus, one would like to generalize it for Reeb flows. This was first posed as a question
in 2012 by Ginzburg—Gdirel, but prior to our work it had not been clear how to prove
it; see e.g. the discussion in [30, p. 4]. In fact, Theorem @, which uses new tools that
did not exist at the time of [27], provides this theorem as a corollary, for any framed
Hamiltonian flow and for holomorphic curves with domain any closed Riemann surface
with finitely many punctures removed. Here is the precise statement:

Theorem 7. Fiz a closed framed Hamiltonian manifold (Y,n) and an n-adapted almost-
complex structure J. Let A be a locally mazimal R, -invariant set, U an isolating neigh-
borhood and V. < U such that V. < U. Fiz an integer T > 0 and let u : C — RxY
be any standard J-holomorphic curve with x(C) = —T. Then there is a constant
c=c(n, J,N,UV,T) >0 such that

Alu)>ec>0
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whenever there exists s_, s, € R with
(1) wC)n{s_} xY cV, u(lC)n{sy}. xY ¢ U.

In analogy with the progress for Hamiltonian diffeomorphisms summarized above,
one hopes that Theorem [7| has many potential applications concerning the dynamics of
Reeb flows.

Remark 1.12. Theorem [7| directly generalizes the crossing energy theorem for Hamil-
tonian diffeomorphisms from [27, 29]. Given a Hamiltonian diffeomorphism ¢, the
mapping torus Y; carries a natural framed Hamiltonian structure n such that R, gen-
erates the suspension flow. There is an explicit correspondence between Floer cylinders
for a choice of Hamiltonian H generating ¢ and holomorphic cylinders in R ><Y¢,E| The
Floer energy of a Floer cylinder is equal to the action of its corresponding holomorphic
cylinder. Thus, it suffices to apply Theorem [7|for Y =Y, and pass through this corre-
spondence. On the other hand, there are also very interesting crossing energy theorems
proved in the recent works [9] [10, 45]. The results in [0, [10] are for Floer cylinders in
completed Liouville domains and the results in [45] are for Floer strips with Lagrangian
boundary conditions; these do not similarly follow from Theorem [7]

1.6. Further remarks.

1.6.1. The C?-stability conjecture. A recent breakthrough result by Contreras-Mazzucchelli
[12] established the C*-stability conjecture for geodesic flows on Riemannian surfaces,
namely that the C%-structurally stable flows are exactly the Anosov ones. Our methods
give an alternative proof of the following key ingredient in their proof, giving a sufficient
criterion for a geodesic flow to be Anosov:

Corollary 1.13 ([12, Theorem D]). Let F' be a closed Finsler surface, and let P < SF
denote the closure of the union of closed orbits of the geodesic flow. Then if i) P
is uniformly hyperbolic and i) the geodesic flow is Kupka—Smale, the geodesic flow is
Anosov.

It is important to note that Corollary is only a special case of [12, Theorem D],
which holds for all Reeb flows on closed 3-manifolds. However, the special case suffices
for the application to the stability conjecture.

1.6.2. Non-rational maps. We note that, in the case of the torus, our results are close to
being sharp. Indeed, any non-rational ¢ is either i) Hamiltonian isotopic to a translation
(z,y) — (z+a,y+b) where (a,b) ¢ Q? or ii) Hamiltonian isotopic to a smooth conjugate
of an affine map
(z,y) = (z + ny,y + ),

where n is a nonzero integer and b ¢ Q. The examples in case i) have no proper compact
invariant sets when both a and b are irrational and the examples in case ii) never have
any proper compact invariant subsets.

It would be interesting to see whether our results hold for rational maps in higher
genus.

4An explicit derivation for the 2-disk, which generalizes to arbitrary symplectic manifolds, can be
found in [6, Lemma 20].
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1.6.3. Three-dimensional energy surfaces. Density results such as Corollary and
Corollary also hold for compact regular Hamiltonian hypersurfaces in some sym-
plectic 4-manifolds, including R*, without any contact type condition. This will be
discussed in a future work [46].

1.6.4. Higher dimensions. We close with some speculations on the extension of our
results to higher dimensions. As we mentioned in Remark higher-dimensional
versions of the theorems in this paper were proved in [29 0], but with the dynamical
assumption that the systems must have finitely many periodic orbits.

It would be very interesting to find the weakest possible dynamical assumptions for
which our theorems extend to higher-dimensional Hamiltonian diffeomorphisms and
Reeb flows. Our Theorem [ on the extraction of invariant sets from low-action holo-
morphic curves with bounded topology works in all dimensions, and as mentioned in
Remark [I.12] implies a “crossing energy bound” which is a key technical ingredient
(among many) in [29]. Proposition also clearly works in any dimension. How-
ever, our existence results for low-action holomorphic curves rely on deep properties
of ECH/PFH, which are invariants defined for area-preserving surface diffeomorphisms
and three-dimensional Reeb flows, respectively.

Finding low-action holomorphic curves with bounded topology in higher dimensions
in high generality seems like it will require substantial new ideas. This is consistent
with a more general theme in a range of problems in current symplectic research —
ranging from the kind of questions considered in this paper to problems about the alge-
braic structure of certain homeomorphism groups to questions like symplectic packing
stability [14) 13] — where one would like analogues of various properties related to
ECH/PFH in higher dimensions.

On a more optimistic note, the fact that Theorem [6] works for non-cylindrical curves
is an asset. It opens up for the first time the possibility of using powerful theories such
as contact homology or SFT, which count non-cylindrical curves, to explore invariant
sets of higher-dimensional Reeb flows. Indeed, as we have seen here, one needs to
consider non-cylindrical curves in our arguments to get our results.

1.7. Outline of article. §[2 proves Theorems 4] 5, and [7] The proofs of Theorems [4]
and 5| require Theorem |§| and two propositions (Propositions and . These re-
spectively assert that monotone area-preserving maps and Reeb flows of torsion contact
forms have many low-action holomorphic curves with controlled topology. § |3 proves
Proposition [2.3| using embedded contact homology. § [4] proves Proposition using
periodic Floer homology. § [ proves Theorem [6]
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2. PROOFS OF MAIN DYNAMICAL RESULTS

This section is primarily concerned with the proofs of Theorems [ and [5} The proofs
we give here rely on Theorem @ and two propositions (Propositions and , whose
proofs are all deferred to subsequent sections. After these results are proved, we explain
how they imply the other dynamical theorems stated in the introduction. We conclude
the section with a proof of Theorem 7], which is a straightforward corollary of Theorem [6]

Before proceeding, let us explain the basic ideas behind the proofs. Proposition
asserts that any nondegenerate torsion contact form on a closed 3-manifold Y admits
sequences of holomorphic curves in R xY with uniformly bounded topology, finite Hofer
energy, and arbitrarily low action. Moreover, the curves in the sequence can be taken
to pass through any point (0, z) in R xY that is not on any closed Reeb orbit. The low
action and bounded topology produce, via Theorem [6 and Proposition [1.9] a connected
family X of compact invariant sets. The finite Hofer energy and point constraints are
then exploited, via an elementary topological argument, to conclude Theorem [f| The
theorem is proved for degenerate contact forms by approximating them by nondegen-
erate contact forms and using the resulting holomorphic curves; to make this work, we
require a certain amount of quantitative control over the relevant curves, which is why
Proposition |2.3is quantitative in nature. The path from Proposition to Theorem [
is completely analogous.

Remark 2.1. Our style of argument is robust enough to generalize to other settings
where low action holomorphic curves with bounded topology are present. For example,
it follows from [29] that the mapping torus of any Hamiltonian pseudorotation of CP"
admits holomorphic cylinders of arbitrarily low action, with finite Hofer energy, passing

through any point in the symplectization. Applying our argument proves the analogue
of Theorems [4] and [5] for these maps.

2.1. Existence of low-action holomorphic curves with bounded topology. The
following two key propositions show that mapping torii of monotone area-preserving
surface diffeomorphisms and Reeb flows of torsion 3-dimensional contact forms have,
after possibly making small perturbations, many low-action holomorphic curves with
bounded topology. We start with the statement for area-preserving surface diffeomor-
phisms. Relevant notations and definitions are found in Section [4]

Proposition 2.2. Let ¢ be a monotone area-preserving diffeomorphism of a closed
symplectic surface (3,w). LetY, denote the mapping torus of ¢. There exists a positive
integer dy = 1, depending only on the Hamiltonian isotopy class of ¢, such that the
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following holds for all d = dy and any nondegenerate Hamiltonian perturbation ¢’ of ¢:
For any fixed 2’ € YQ;, not on any closed Reeb orbit, and generic choice of ¢'-adapted
J', there exists a standard J'-holomorphic curve u : C' — R xYy such that:

(a) (0,2") e u(C);

(b) E(u) < d;

(c) A(u) < d?%;

(d) x(C) = —2.

Next, the statement for Reeb flows. Relevant notations and definitions are found in
Section [3l

Proposition 2.3. Let A be a torsion contact form on a closed 3-manifold Y. Then there
exists a positive integer kg = 0 such that the following holds for any k > ky and any
C*-small nondegenerate perturbation N of A: For any fized 2’ € Y, not on any closed
Reeb orbit, and generic choice of N -adapted J', there exists a standard J'-holomorphic
curve u : C' — R xY such that:

(a) (0,2") e u(C);

(b) E(u) < K

(c) A(u) < k=116,

(d) x(C) = —2.

Remark 2.4. In fact, we will see in the proofs of Proposition and Proposition
that not only does there exist curves with the above properties, but that the ECH/PFH
curves satisfy these properties under the assumptions of the proposition with probability
1. More precisely, as we will explain later, for k (resp. d) as in the statement of the
propositions, the non-triviality of the “U”-map implies the existence of approximately
k (resp. d) curves, and we can look at the proportion that satisfy the conclusions of
the propositions. Our arguments imply that this number limits to 1.

2.2. The Hausdorff topology. Let Z denote any separable and locally compact met-
ric space (e.g. any second countable topological manifold). Recall that K(Z) denotes
the space of all closed subsets of Z, equipped with the topology of Hausdorff conver-
gence. We collect some basic facts about the Hausdorff topology here.

2.2.1. Hausdorff convergence. Fix any sequence {A} in K(Z). We define liminf Ay €
K(Z) to be the set of z € Z such that each neighborhood of z intersects all but finitely
many of the Ay. We define limsup Ay, € K(Z) to be the set of z € Z such that each
neighborhood of z intersects infinitely many of the Ag. It is clear that liminf Ay <
limsup Ay. Then A, — A in the Hausdorff topology if and only if liminf A, = A =
limsup Ay. We recall [44, Corollary 2.2] that, under the imposed conditions on Z, the
space K(Z) is compact and metrizable.

2.2.2. Continuity lemmas. The following lemmas are about continuity properties of
maps between K(Z)’s. They are elementary and we omit the proofs. The first lemma
asserts that taking a union with a closed set is continuous.

Lemma 2.5. Let Z be a separable and locally compact metric space. For any N € K(Z),
the map A — A U A is a continuous map from K(Z) to itself.
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On the other hand, taking an intersection with a closed set is usually not continuous.
The next lemma asserts that it is continuous in a rather specific situation.

Lemma 2.6. Let Y be any separable and locally compact metric space and set X :
(—=1,1) x Y, equipped with the product metric. Then for any sequence {Ay} in KC(Y)
such that

(—1,1) x Ay > (—1,1) x A e K(X),

we have A, — A.

The last lemma asserts that, when Z; is a compact metric space, pushing forward a
closed set by a continuous map f : Z; — Z5 is Hausdorff continuous.

Lemma 2.7. Let f : Z1 — Zy be a continuous map where Zy is a compact metric
space and Zs is a separable and locally compact metric space. Then the map A — f(A)
defines a Hausdorff continuous map K(Z,) — K(Z5).

2.2.3. Invariant sets of flows. Suppose that Z is a smooth and compact manifold and
let R denote a vector field on Z. Let K(Z, R) < K(Z) denote the subspace of all closed
subsets invariant under the flow of R. This subspace is closed and therefore compact,
but it may not be connected. The following lemma states and proves an important
property of locally maximal A € (Y, R).

Lemma 2.8. If an element A € K(Z, R) is locally mazimal, then it is mazimal with
respect to inclusion in any connected subspace Z < K(Z, R) containing A.

Proof. Conley proved [I1, Theorem 3.5] that A is locally maximal if and only if it is
maximal with respect to inclusion in some open and closed subspace Z' < K(Z, R).
Any connected subspace Z such that A € Z must be contained in Z’ and the lemma
follows. OJ

2.3. Proofs of Theorem 4] and Theorem [5| In this section, we prove Theorems
and Theorem |5l The proofs are virtually identical, so for brevity we will only give the
proof of Theorem [4]

The main ingredients in the proof of Theorem [] are Theorem [6] Proposition [2.2] and
Proposition [I.9 Choose any monotone area-preserving diffeomorphism ¢ of a closed
symplectic surface (X,w). Let Y denote its mapping torus and n = (dt,ws) denote
its associated framed Hamiltonian structure. We observe that Theorem 4| follows from
proving its analogue in the mapping torus:

Proposition 2.9. For any closed R,-invariant set A = Y, containing all periodic orbits
of Ry, either A =Yy or A is not locally mazimal.

Proof of Proposition[2.9. Let A < Y, be any compact invariant set. We assume without
loss of generality that it is proper, since if A = Y, we are already done. Our argument
will go via approximation to the nondegenerate case, so choose a sequence {Hj} of
smooth functions Hy : R /Z x¥ — R converging in C* to 0 such that for each k, the
map ¢y := ¢ o w}{k is nondegenerate. For each k, the pair ng := (dt,wy + dHy, A dt) is a
framed Hamiltonian structure, and the map

(t.p) = (t. (¥h,) " (P))
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descends to an isomorphism

(Y¢777k‘) - (Y¢k7 (dt?w¢k))

of framed Hamiltonian manifolds. Since Hj converges to 0 in the C* topology as
k — oo, we have that n; converges in C* to n as k — . For each k£ we choose an
ni-adapted Jj such that the sequence {(n, Jx)} converges to a pair (1, J) in D(Y).

Now fix any point z € Y not in A. Then there is a sequence of points {z;} converging
to z, such that z is not on any closed Reeb orbit for ¢y ; this follows from the fact that
the ¢, are nondegenerate, hence the union of their closed Reeb orbits has measure zero.
By Proposition [2.2] after possibly making an arbitrarily small perturbation to each Jj,
for each sufficiently large d and each sufficiently large k there exists a Ji-holomorphic
curve

Ud k- Cd,k —- R XY¢
such that:
(1) (0,2x) € uar(Cap);

(iii) A(ugr) < d”V%

(iv) x(Car) = —2.

Write P < Y, for the union of closed orbits of R, and write P for its closure. For
each d and k, write P4(k) for the union of closed orbits of R,, of period at most d. By
the Hofer energy bound in (ii), we have that the level sets concentrate around closed
orbits of period < d as s — . We also note that since R,, — R,, we have for each
fixed d that

limsup P4(k) < P,

k—o0
that is periodic orbits of R,, with bounded period converge to periodic orbits of R,. It
follows that for each d, we can choose some large k; » 1 and some s; € R such that

(2) limsup 7, - (ud,kd(Cd,kd) N (sa— 1,84+ 1) x Y¢> c (-1,1) x P.
d—0

Write X := (—1,1) x Y, and write X < K(X) for the limit set of the sequence
{uar,ta=1; by passing to a subsequence, we can assume by Proposition that this
is connected. Let f : K(X) — K(Y,) denote the map A — A n {0} x Y, and write
Y := f(X). By Lemma [2.6, the map f is continuous at each point of X, so it follows
that ) is a connected subset of I(Y').

By (iii), (iv), and Theorem [0, we have that Y = K(Yy, R,). By (2), some A’ € Y is
contained entirely in P, and is therefore contained in A. By (i), some A” € ) contains
the point z. Now let Z < K(Y}, R,)) denote the collection of closed invariant sets equal
to a union K U A for some K € X. By Lemma [2.5] Z is the image of a connected
set by a continuous map, so it is connected. Moreover, A € Z, since A = A’ U A, and
A" U A € Z by definition. However, A” U A is not a subset of A, since it contains z.
Hence, by Lemma A is not locally maximal.

O

2.4. Proofs of other dynamical results.
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2.4.1. Proofs of Theorems|[1] and[4 We prove Theorem [I] using Theorem [4 Theorem
the version for three-dimensional Reeb flows, follows from the same formal argument
using Theorem [5] and so its proof will be skipped for brevity.

Proof of Theorem[1 Let ¢ : ¥ — ¥ be a monotone area-preserving diffeomorphism of
a closed surface and let A < ¥ be a proper closed invariant set. Set U := X\ A. Let
P < ¥ denote the union of all periodic orbits. If P & A, then there exists a periodic
orbit contained in U. Therefore, U is not minimal. If P < A, then by Theorem 4] there
exists some proper closed invariant subset A’ arbitrarily C°-close to A but not equal to
A. By taking A’ sufficiently close to A, we can ensure that A’ n U is not equal to U.
Then any point z € A’ n U will not have dense orbit in U, so U is not minimal. U

2.4.2. Proofs of Corollaries and [I.3. We prove Corollary [I.T} the same formal ar-
gument proves Corollary [I.2]

Proof of Corollary[1.1. Let ¢ : ¥ — X be a diffeomorphism satisfying the assumptions
of Theorem (1| The corollary is equivalent to the statement that there exists infinitely
many proper compact Rg4-invariant subsets whose union is dense in the mapping torus
Y. Let K" := IC(Yy, Ry) \ {Y,} denote the set of all proper compact Rs-invariant sets.
The set K’ admits a natural partial order defined by inclusion. By Theorem [1, K’ has
no maximal element. The set K’ is non-empty since ¢ has at least one periodic orbit
(see Proposition . The set K’ is infinite, since otherwise it would have a maximal
element. Now consider the set

Z:=Jacy,
AeK!
the closure of the union of all proper compact invariant sets. The set Z is compact,
invariant, and contains all proper compact invariant sets. Since K’ has no maximal
element, Z must be equal to Y. 0

2.4.3. Proof of Theorem|[3

Proof. Fix a closed Finsler surface F' as in the statement of the theorem. Now we
introduce the notion of a “projected invariant set” of the geodesic flow, which will
be useful for our proof. Recall that there is a Reeb vector field whose orbits project
to geodesics. We write SF' for the unit tangent bundle and R for this vector field.
Let 7 : SF — F denote the bundle projection. We call a compact subset = < F' a
projected invariant set if there exists some compact R-invariant subset A < SF such
that 7(A) = Z. A projected invariant set = is called proper if = # F. The standard
example of a projected invariant set is the closure m of some geodesic v. We use
Theorem [f to prove the following analogue of Corollaries [I.1] and [I.2]

Lemma 2.10. There exists infinitely many distinct proper projected invariant sets
whose union is dense in F.

Proof. Let = < I be any proper projected invariant set. We claim that there exists a
proper projected invariant set =’ such that = is a strict subset of Z/. Once this claim
is established, an analogous argument to the proof of Corollary proves the lemma.
We omit this part and focus on proving the claim.
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Fix a proper projected invariant set = as above. We construct the set =’ in two cases,
depending on whether = contains all of the closed geodesics or not. First, suppose that
there exists a closed geodesic v : R — F' such that 7(RR) is not a subset of =. Then, we
set 2 = E U y(R).

Next, suppose that = contains the images of all closed geodesics. Let A < SF de-
note the closure of the union of all compact invariant sets projecting into =; note that
7(A) = E. Since = contains the images of all closed geodesics, it follows from the con-
struction that A must contain all closed orbits of the geodesic flow. By Theorem [5| and
Lemma [A4] A is not locally maximal. Therefore, there exists a Hausdorff convergent
sequence A, — A such that Ay is not a subset of A for each k. We can assume without
loss of generality that A is a strict subset of Ay for each k. This is done by replacing
Ay with Ax U A for each k; these sets still Hausdorff converge to A by Lemma [2.5] By
the definition of A, it follows that = is a strict subset of 7(Ay) for each k. Moreover, it
follows from Lemma that m(Ag) — =, so m(Ag) is a proper projected invariant set
for sufficiently large k. We set Z' = m(Ay) for any choice of sufficiently large k. OJ

We now discuss how to prove Theorem [3] using the lemma. By Lemma [2.10] there
exists an infinite collection F < KC(F') of projected proper invariant sets whose union
is dense in F. For any proper projected invariant set = < F' and any point z € F|
there exists a geodesic v : R — F such that v(0) = z and v(R) < Z. Hence, for each
= € F, we obtain a countable sequence of geodesics 7¢, such that i) vZ(R) < Z for
each k and ii) Ui (R) is dense in =. After passing to a subset, we may assume that
these geodesics have distinct closures. Let G be the collection of all geodesics vi over
all Z€ F and all k. Then G is infinite, because F is, and satisfies Theorem [3(a—).

O

2.4.4. Proof of Corollary[1.13

Proof. Contreras—Mazzucchelli proved [12], Section 3.4, p. 18] that, given conditions i)
and ii), the invariant set P is locally maximal. Their argument is short and we para-
phrase it here for the convenience of the reader. A uniformly hyperbolic invariant is
locally maximal if and only if it has “local product structure” [25, Theorem 6.2.7]. By
the definition of local product structure [12, Section 3.2], the set P has local product
structure if and only if for any pair of sufficiently close periodic orbits v; and 79, the
local stable/unstable manifolds intersect in P. The existence of a non-empty transverse
intersection follows from Condition ii) and the fact that +; and 7 are close. To prove
that the intersection is contained in P, Contreras-Mazzucchelli observe that if v, and
~9 are close then they are in the same homoclinic class. By the Birkhoff-Smale horse-
shoe theorem [25, Theorem 6.5.2], it follows that any intersection of stable/unstable
manifolds is approximated by periodic orbits.

Now, the corollary follows immediately from our main Theorem [5, Since P is locally
maximal, Theorem [5| and Lemma imply that P = SF. By i), we have that SF is
uniformly hyperbolic, and therefore that the geodesic flow is Anosov. U

2.5. Proof of crossing energy theorem. We prove Theorem [7] using Theorem [6]
Proposition [1.9] and the lemmas from this section.
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Proof of Theorem[7. Assume for the sake of contradiction that the corollary is false.
Then there exists a sequence of J-holomorphic curves {u; : Cp — R xY} satisfying
(@, x(Cx) = =T and A(uy) < 1/k. By Theorem [0 every element of the limit set X
is a cylinder over a closed invariant set. By Proposition , after replacing {u;} with
a subsequence if necessary, the limit set is connected. Let f : K(X) — K(Y) denote
the map A — A n {0} x Y and set ) := f(X). By Lemmaand Theorem |6 )V is a
connected subspace of K(Y, R,).

Let Z < K(Y') denote the collection of closed invariant sets which are a union K U A
for some K € )Y; this is connected by Lemma . The first item in implies Y
contains an invariant set A’ contained in U, and since U is an isolating neighborhood of
A, this implies A’ < A. It follows that A € Z. Since A is locally maximal, every element
of Z is a subset of A by Lemma [2.§ Hence, every element of ) is a subset of A. This
in turn implies that for sufficiently large k, every level set of u;(C}) lies inside R x V.
We now arrive at a contradiction by appealing to the second condition of . O

3. LOW-ACTION CURVES FROM EMBEDDED CONTACT HOMOLOGY

This section proves Proposition [2.3] Previously statements like this have been proved
under the assumption of two periodic Reeb orbits [39], or later under the assumption
of finitely many periodic Reeb orbits [16]; this section shows that this phenomenon in
fact holds much more generally.

The basic strategy of proof follows the strategy developed in [39] [16], whereby one
considers a tower of U-curves and compares the ECH index [ to the Jy index, which
controls the topology of the curves — we will review these terms below. What is new
here is the argument to bound the difference between I and Jy: this is controlled by the
Chern class and the Conley-Zehnder index, and some new ideas are needed to bound
these terms without assuming finitely many orbits.

3.1. Embedded contact homology. We review the basic features of embedded con-
tact homology [33] B5] here. Fix a closed, smooth, connected, oriented three-manifold
Y and a contact structure &.

3.1.1. Reeb flow basics. Fix any contact form A defining &, i.e. satisfying the identity
ker(A) = £. Recall that the Reeb vector field R is the unique vector field solving the
equations
AMR)=1, dAR,—)=0.

A closed Reeb orbit is a smooth map v : R/TZ — Y for some T > 0 such that
A(t) = R(y(t)) for all ¢; as is standard we will make no distinction between two closed
Reeb orbits that agree up to a reparameterization of the domain. A closed Reeb orbit
is simple if 7y is injective. For any closed Reeb orbit ~y, we write 4% : R /kTZ — Y for
its k-th iteration. The number T is the action of v, denoted by

A(y) = L/\ =T.

The time T linearized flow of R determines a symplectic isomorphism &) — (o)
called the Poincaré return map. The orbit « is nondegenerate if the return map does
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not have an eigenvalue equal to 1. A nondegenerate orbit v is hyperbolic if P, has
real eigenvalues and elliptic if P, has complex eigenvalues of unit length. We say A
is nondegenerate if all closed Reeb orbits are nondegenerate. For any fixed contact
structure £, a generic defining contact form A is nondegenerate.

3.1.2. ECH generators. A Reeb orbit set is a (possibly empty) finite set o = {(a;, m;)}
of pairs (a;, m;), where o; is a simple closed Reeb orbit and m; € N is a positive integer
multiplicity. An ECH generator is a Reeb orbit set o = {(«;, m;)} such that i) each of
the a; are pairwise distinct and ii) m; = 1 if a; is hyperbolic. Denote by ECC(Y, A) the
Z /2-vector space generated by the set of ECH generators. Any Reeb orbit set a has a
homology class [a] := >, m;[cey] € Hi(Y;Z). For each I' € H((Y;Z), let ECC(Y,\,T)
denote the sub-module generated by ECH generators homologous to I'.

3.1.3. ECH differential. Assume that X is nondegenerate. Choose a generic A\-adapted
almost-complex structure J on R xY. The ECH differential

8, : ECC(Y, \) — ECC(Y, \)

is defined by counting certain “J-holomorphic currents” which we now define. We say
that a J-holomorphic curve u : C' — R xY is somewhere injective if there exists ( € C'
such that v (u(¢)) = {¢} and Du is injective at (. A J-holomorphic current is a
finite set C = {(Ck,dk)} of pairs where the C} denote distinct standard, somewhere
injective J-holomorphic curves with finite Hofer energy, and the dj are positive integer
multiplicities. We say that C is somewhere injective if dp = 1 for each k and embedded
if the C} are pairwise disjoint and embedded. For any .J-holomorphic current C =
{(Ck,d)}, the slices
Cn{s} xY ={(Cr n{s} xY,dy)}

form for |s| » 1 a weighted collection of embedded loops in Y. The slices converge as
1-dimensional currents to Reeb orbit sets a and [ as s — o0 and s — —0, respectively.
For any pair of Reeb orbit sets o and § with [a] = [5], we let M(a, 5) denote the
moduli space of J-holomorphic curves with positive asymptotic limit at a and negative
asymptotic limit at .

Any C € M(a, f) has an associated ECH index I(C) € Z, defined below, and for
each k € Z we let My (a, ) denote the subspace of curves of ECH index k. When J
is sufficiently generic, the space M;(a, ) is a smooth 1-dimensional manifold. More-
over, it has a free R-action given by the translation action on R xY', and the quotient
M (a, B)/ R is a finite set of points. The matrix coefficient of the ECH differential with
respect to a pair of ECH generators o and ( is defined by the identity

(Oja, B) := #a M(ar, 5)/ R
where #, denotes the modulo 2 count of points. By [37, B8], 0% = 0, and therefore
(ECC(Y, \), ;) is a chain complex. The embedded contact homology ECH(Y, &) is its
homology group. A consequence of Taubes’ isomorphism of ECH with monopole Floer
homology [51] is that ECH(Y, &) does not depend on the choice of contact form A
defining & or the choice of J used to define the ECH differential. The ECH differential

preserves the homology class [a] € H;(Y;Z) of an orbit set «; for any I' € Hy(Y;Z) we
write ECH(Y, £, T") for the homology of (ECC(Y, A\, T), 0;).



18 DAN CRISTOFARO-GARDINER AND ROHIL PRASAD

3.1.4. The U-map. For a generic choice of A\-adapted almost-complex structure J and
any point z € Y not on any closed Reeb orbit, there exists a chain map

Uy : ECC(Y, A\, T') - ECC(Y, A,T)

defined as follows. Write My(«, f3; z) for the space of all J-holomorphic currents with
ECH index 2 whose support contains (0, z) € R xY. For a generic choice of J and any
z not on any closed Reeb orbit, the space My(a, f;2) is a finite set of points. The
matrix coefficient of U;, with respect to a and /3 is defined by the identity

Uz, B) = #2 M(a, B; 2).
The map Uy, descends to a map on homology that we call the U-map:

U : ECH(Y,¢,T) — ECH(Y, £,T).

The map U, may vary with different choices of J and z. However, the chain homotopy
class of Uj . does not depend on the choice of J and z, so the induced map on homology
does not depend on the choice of J and z.

3.1.5. U-towers and the volume property. Fix any T' € H{(Y;Z). A U-tower is a se-
quence of nonzero classes

{or}k=0 € ECH(Y,&,T)

such that i) Uoy = op—1 for each k > 0 and ii) Uoy = 0. Taubes’ isomorphism [51]
and a computation by Kronheimer—-Mrowka [41, Chapter 35] prove that ECH(Y, ¢, T)
contains a U-tower whenever the class ¢;(£) +2PD(T") € H*(Y;Z) is torsion. Here ¢;(€)
denotes the first Chern class of £ with respect to any complex structure which rotates
positively with respect to d\.

For any nonzero class 0 € ECH(Y, §), define its spectral invariant c,(\) € R to be the
infimum of all L such that o is represented by a cycle in ECC(Y, A) with all constituent
generators having action < L. Here the action of an ECH generator a = {(a;,m;)} is
defined to be

Ala) = Z m; Ala).

A quantitative version of the proof that ECH is independent of the choice of J used to
define the ECH differential shows that the spectral invariants do not depend on J either.
However, the spectral invariants can and usually do vary with A\. Each spectral invariant
co () is CO-continuous with respect to A; this allows us to extend the definition of ¢, (\)
to degenerate A\. The following lemma records some relevant chain-level information
that we can extract from a U-tower.

Lemma 3.1. Assume that there exists a U-tower {oy}r=0 < ECH(Y,&,T) for some
I'e Hi(Y;Z). Assume that X\ is nondegenerate and choose generic J, and (0, z) not
on any closed Reeb orbit, so that the ECH differential 0; and the chain map Uy, are
well-defined. Then for each € > 0 and each k = 1, there exists an ECH generator oy
such that

(a) Alay) < ¢, (N);
(b) Uk (o) # 0.
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Proof. For any fixed ¢ > 0 and k, there exists a cycle x € ECC(Y, \,T') representing oy,
which splits as a sum of ECH generators z = Y1~ | &; with action less than c,, (\) + €.
Since there are only finitely many Reeb orbit sets of action < ¢, (A) + 1, as A is
nondegenerate, we can therefore find a cycle x as above with action exactly ¢, (A).
Since UF,(x) # 0, it follows that U}, (z;) # 0 for some 4. Set oy, := ;. O

One of the most powerful properties of the ECH spectral invariants is the volume
property proved by Cristofaro-Gardiner-Hutchings-Ramos [17]. Their result, stated in
the following proposition, shows that that the spectral invariants of a U-tower asymp-
totically recover the contact volume.

Theorem 8 (ECH volume property, [17]). Assume that there ezists a U-tower {og }x=0
ECH(Y,&,T) for some T' € Hy(Y;Z). Then for any contact form \ we have

(3) lim c¢,, (\)?/2k = J A A dA.
k—0o0 v

3.1.6. The ECH index. We now give the previously deferred definition of the ECH
index. Fix a nondegenerate contact form A and a pair of ECH generators a = {(a;, m;)}
and 8 = {(8;,n;)}. Let Hy(Y, , B) denote the space of equivalence classes of integral
2-chains with boundary a — 3, where two such chains are equivalent if and only if they
differ by a 2-boundary. The ECH index of a class Z € Hy(Y, o, ) is an integer defined
by the formula

(4) (Z) = c(2)+ Q- (Z +ZZCZ ) = > > CZ.(BY).

i k=1 7 =1

Definitions of these terms can be found in [35]. We will narrow our discussion of the ECH
index to exactly those terms which are useful for the proof of Proposition namely
the relative Chern class and the Conley-Zehnder index. The relative Chern class ¢, (Z)
is defined as follows. We choose an oriented smooth surface S < Y representing Z and
choose a section ¢ : S — &, transverse to the zero section, such that 1 is a nonzero
constant on each component of S and we set

c-(2) == #¢71(0)

where # denotes the oriented count of points. As for the Conley-Zehnder index, we
define it by

CZ-(7y) = [0-(7)] + [6-(7)]

where 6,() denotes the “monodromy number” of the linearized flow along ~ in the
trivialization 7. We refer the reader to [35] for a definition of the monodromy num-
ber. We define the ECH index of a curve to be the ECH index of its homology class,
emphasizing that this is independent of the choice of 7.

3.1.7. Topological complezity of U-map curves. A variant of the ECH index called the
Jo index plays a key role in the proof of Propositions and [2.3] In the notation of
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we write

Jo(Z) = —c(2) + Q:(Z) + )] 2 CZ(af) = ). Z CZ, (5
(5) i jol=1
— I(Z) — 2¢,(Z ZCZ ) = 2, CZ(B7)).

The Jy index controls the topological complexity of a holomorphic current counted
by the U-map. To state the bound precisely, we need to recall the following structural
property of U-map currents, a proof of which is found in [35, Proposition 3.7]. Any
current C € My(«, ; z) counted by the U-map splits as a disjoint union Cy LCy where Cy
is a union of trivial cylinders with multiplicities and C} is an embedded J-holomorphic
curve with I(Cy) = 2.

Proposition 3.2 ([34, Section 6]). Fiz a generic J and point z so that the chain map
Uy is defined, and let C = CouCy € My(av, B;2) be a J-holomorphic current counted
by the U-map. Then

(6) Jo(C) = —x(Ca).

3.2. The based rotation number. To prove what we need to know about the ECH
curves, we will also need to recall some information about the “rotation number” of
flows. Our treatment here is inspired by, and closely follows [7], though we handle a
few points in a different way that is better suited for our purposes. For any closed Reeb
orbit v : R/T'Z — Y and any choice of (positive) symplectic trivialization 7 there is
a number p.(7,€) € R called the based rotation number of ~, which measures how ¢
rotates under the linearization of the Reeb flow. It is defined as follows. The linearized
flow is symplectic; apply polar de-composition and take the unitary part. The unitary
part descends to a flow on the oriented real projectivization P(¢). Pull back by v and
conjugate with the trivialization 7 to define a flow

3 Rx(R/TZxR/Z) >R/TZxR/Z

generated by a vector field R. We write § : R/TZ xR /Z — R /Z for the angular
coordinate on the target. Let 6 : [0, 7] — R be the unique real-valued lift of the circle-
valued map ¢ — 6(®;(0,0)) satisfying the initial condition #(0) = 0. Then the based
rotation number is
pr(7,€) = 0(T).

This depends only on the homotopy class, rel endpoints, of the path of symplectic
matrices arising from the linearized flow.

The next lemma relates the based rotation number for the contact structure to the
Conley-Zehnder index.

Lemma 3.3. For any closed Reeb orbit v and any trivialization 7, we have the bound

(7) | CZ-(v) = 2p7 (7, §)| <6
Proof. The Conley-Zehnder index is defined by

CZ: () = [0:(N] + 10-(0)]
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where 6, () denotes the monodromy number of 7 in the trivialization 7. Define p (7, £)
analogously to p,(7, &), but using the full linearized flow rather than just the unitary
part. It is proved in [7, Lemma 2.6] that

107(7) — P (v,§)| < 1.
It remains to understand the relationship between p and p’. We claim that

(8) 1pr(7,6) — pr (1, < 1,

which implies the lemma in view of the above. To see why holds, we first note
that if we choose as our basepoint (i.e. our trivialization 7) an eigenvector of the
positive-definite symmetric part of the polar decomposition of the time T linearized
flow, then in fact p. = p,. Indeed, the space of positive-define symmetric and symplectic
matrices is contractible, and the rotation number only depends on the homotopy class,
rel endpoints, so we can replace the positive-definite part of the path of matrices arising
from the linearized flow by symmetric and symplectic positive-define matrices which all
have 7 as an eigenvector with positive eigenvalue. The claimed inequality now
follows from [7, Lemma 2.6], which bounds the difference between the based rotation
number measured with respect to two different basepoints. 0

3.3. Proof of Proposition [2.3l We can now give the proof of Proposition [2.3]

Proof. Step 1: To deal with the fact that we are considering contact structures that are
torsion, but possibly non-trivial, we will need to work with an “n*"-power” construction.
This step collects the results we will need about this.

Fix an integer n > 1 such that n-¢;(§) = 0. Write §, = £ ® ... ® & for the n-fold
(complex) tensor product of €. This is a (trivial) complex line bundle. Choose a unitary
trivialization 7 of £ over the simple closed Reeb orbits. This induces a trivialization 7,
of &,. The line bundle &,, has a relative Chern class, defined analogously to the contact
case. We first note that the relative Chern class of &, with respect to 7, is computed
as follows:

(9) CTn(Z7£'n«) :n'CT(Zaf>‘
Next, it is useful to understand how the Chern class depends on the choice of trivi-

alization. Fix any pair of unitary trivializations 7,7’ and any simple closed Reeb orbit
v:R/TZ — Y. The trivializations define unitary bundle isomorphisms

7,7 v, - R/TZ xC;

the composition 7 o (7/)~! defines a smooth map R /T'Z — U(1). Denote the degree of
this map by wind. (7, 7';¢,). Then we have the identity

(10) cr(Z,8n) —cm(Z,&n) = — Z m; wind,, (7,7 &) + an windg, (7,7"; &),
i J

This is proved by the same argument as in the case of contact structures [33].

There is an analogous story for the based rotation number. The unitary part of the
linearized flow, being complex linear, defines a map on the complex tensor product &,
and we can defined the based rotation number analogously, which we call the induced
based rotation number (in the trivialization 7) on &, denoted p,(7,&,). We now prove
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some basic properties of the induced based rotation number analogous to the observed
properties of the relative Chern class.

Lemma 3.4. The unitary component of the based rotation number and the induced
based rotation number satisfy the following basic properties:

o (Change of trivialization) For any pair T, 7' of unitary trivializations we have

(11) pr(7:6n) = pr(7:€n) = wind, (7, 75 ).
o (Additive under tensor product) For any n = 1 we have

Proof. Let ® and @' be the respective flows on R /T Z x R / Z defined by 7 and 7/. After
applying a constant rotation to one of the trivializations, we may assume without loss
of generality that 771(0,0) = (7/)7%(0,0). It follows that

©,(0,0) = (1o (7)7") 0 ©4(0,0)
for each ¢ € R. The lifts § and 8 corresponding to 7 and 7’ differ by the lift of the map
R /T Z — U(1) defined by 7o(7/)~!. The map R /T'Z — U(1) has degree wind, (7, 7’; £),
so it follows that .

O(T) — 0 (T) = wind, (7, 7"; Z)

which proves . B B
Now fix any n = 1 and let ® and ®,, be the respective flows on R /T'Z x R / Z defined

by 7 and 7,,. We observe that

(én)t ="nn-: (it
for each ¢ € R. This implies that 6, = n - @ where 6 and 6, are the lifts corresponding
to 7 and 7,. Evaluating both sides at T" yields . 0

Step 2: Recall that the tensor power £, is a trivial complex line bundle. We fix a
global unitary trivialization t of £, over the entire manifold Y. Let A" be any nondegen-
erate contact form. Let o = {(cw,m;)} and 8 = {(B;,n;)} be any pair of homologous
ECH generators such that A(5) < A(«a). This step proves that there exists a con-
stant § > 0 depending only on the background metric, the C? norm of X, and the
trivialization t such that for any Z € Hs(Y, o, 5) we have

(13) [1(Z) = Jo(2)] < 6 Al).

Write K(Z) := I(Z) — Jo(Z). Choose any symplectic trivialization 7 of £ over the
simple closed Reeb orbits. Then K(Z) expands as

K(Z) = 2¢,(Z) + 3, CZe(a™) = 3, CZo(8]").

We define
Kapprox(Z,€) i= 26¢(2,€) + 2, pr(0",€) = 23 pe (87, €)

and a corresponding version

(14) KapprOX(Za €n) 1= 201(Z,80) + 22 IOT’(O%TM:&L) - 22 pT’(B;njagn>
i J
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for &,, where 7/ denotes a unitary trivialization of &, over the simple closed Reeb orbits.

It follows from and that the definition of Koppox(Z,&,) does not depend on
the choice of 7/. It follows from that

(15) |K(Z) — Kapprox(Z, )| 6Zmz + 6ij < 12T (N) 7 A(a)

where Tin()\) denotes the minimal period of a closed Reeb orbit of X. Note that
Tomin(N) admits a positive lower bound depending only on the C? norm of .

We now bound K,pprox(Z, €). Since the left-hand side in ([14) does not depend on the
choice of 77 on the right-hand side, we set 7/ = 7,, and use and to show that

(16) Kappr0x<Za 5) = n_l : Kapprox(Za fn)

Now we set 7" = t and expand

Kapprox(Z fn) = QCt(Z gn +QZPt a; 7 n QZpt(ﬁ;njagn)
J

It follows that immediately that ¢(Z,&,) = 0. It remains to bound p(7,&,) for any
closed Reeb orbit v : R /T'Z — Y. To do so, it is convenient to observe that the based
rotation number along v can be computed by integrating the “rotation density” of the
flow with respect to t. To be precise, the global trivialization t and the action of the
unitary part of the linearized flow on &, define a flow

®, :RxY xR/Z—-Y xR/Z

generated by a vector field R. The Lie derivative of the R / Z-coordinate on the target
is a smooth function r; : Y — R, which restricts to the rotation density on any simple
closed Reeb orbit. The function r¢ depends only on t and the linearized Reeb flow, so
7| admits a finite upper bound ¢ > 0 depending only on t and the C? norm of \. We
conclude that

[pe(7,€n)| < suprd - A(y) < 61 - A(7).
It follows from the above bound that

(17) | Kapprox (Z, €0)] < 26, ( Zml () + D> ny A(B))) < 461 A().

Combine , , and to show
|K(Z)| < (12T (N) ™ + 461) A(a)
which proves with 6 := 12T (N) ! + 46;.

Step 3: To simplify the notation, write ¢}, = ¢,, (\'). Choose generic J and z not on a
closed Reeb orbit such that the chain map U, is well-defined. By Lemma , for any
k = 1, there exists an ECH generator o such that

(i) Alow) < ¢;

(it) U5 (ow) # 0.
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It follows that there exists a sequence of ECH generators {;}5_, each with A(8;) <
¢, and J-holomorphic currents {C;}5_; such that C; € M(B;, 8;-1), I(C;) = 2, and
(0, z) € supp(C;) for each j. Now set Z := Z;?:l[cj]. Using the fact that I(C;) = 2 for
each 7 and the bound we derive the bound

k
(18) D 1I0(Ch) = Jo(Z) < 2k + 6 A(ew) < 2k + 20¢}.
j=1

It is an immediate consequence of (6] that Jy(C;) = —1 for each j. Write S for the
set of indices j such that

Jo(Cj) = 3.
It follows that 35; — (k —S1) < 2k + d¢},, hence
3.0

Write Sy for the set of all indices j such that A(C;) > k=16, Since Zle AC;) =
A(ag) — A(Bo) < ¢, and the action is nonnegative, it follows that

(20) 4S5y < VB,

The quantity c(A) is O(k'/?), in view of (3), and for X’ sufficiently close to A ¢}, < 2¢x(\).

Thus, by and there exists an index 0 < j < k in neither S; nor S,.
Take Cj, to be any component of C; passing through (0,z). By (6] it follows that
X(Cx) = —Jo(C;). Thus, Cj satisfies the requirements of Proposition. O

4. LOW-ACTION CURVES FROM PERIODIC FLOER HOMOLOGY

This section proves Proposition [2.2| using the theory of periodic Floer homology
(PFH), an analogue of ECH for area-preserving surface maps defined in [33, [36]. The
proof is relatively simple compared to the proof of Proposition [2.3] above, which uses
deep quantitative properties of ECH. We exploit an algebraic aspect of PFH that is not
present in ECH, namely that PFH has many “U-cycles” [22], [18].

4.1. Periodic Floer homology. We review the theory of PFH. We will discuss both
the basics and some key new developments in the theory. Fix a closed, oriented surface
> of genus g, an area form w, and a diffeomorphism ¢ : ¥ — X preserving the area
form.

4.1.1. Basics. The mapping torus of ¢ is the 3-manifold

Y¢ = [071] X E/(LP) ~ (O’gb(p))

Write ¢ for the coordinate on the interval [0, 1]. The one-form dt on [0, 1] x ¥ descends
to a closed 1-form, also denoted by dt, on Y. The area form w defines a closed two-form
we on Yy. The pair n = (dt,wy) is a framed Hamiltonian structure and the Reeb vector
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field R4 := R, generates the suspension flow of ¢. The mapping torus Y, fibers over
the circle; write Vy — Yy for the vertical tangent bundle.

Several key definitions carry over to this setting from ECH. In analogy with ECH, we
will call periodic orbits of Ry closed Reeb orbits. The definitions of elliptic/hyperbolic
orbits from ECH have analogues here, replacing the bundle ¢ with the bundle V.
Moreover, the ECH and J; indices are also defined in this setting, again replacing &
with V¢.

4.1.2. Rationality and monotonicity. We say ¢ is rational if the cohomology class [wy]
is a real multiple of a rational class. We say that ¢ is monotone if it is rational and we
have ¢1(V}) = c[wy] for some constant ¢ € R. When g # 1, our monotonicity condition
coincides with the monotonicity condition introduced by Seidel [50]. When g = 1,
we show in Lemma that ¢;(Vy) always vanishes, so any rational area-preserving
diffeomorphism is monotone in this case.

4.1.3. Definition of PFH. The definition of the version of PFH that we will use re-
quires that ¢ is rational and also nondegenerate, meaning every closed Reeb orbit is
either elliptic or hyperbolic. Choose a generic n-adapted almost-complex structure J
on R xY,. Choose a union 7 of embedded loops, transverse to Y, called a reference
cycle. Let ¥ denote the homology class of a fiber of the map Y, — S*. The degree d(v)
of 7 is the oriented intersection number of v with [X] € Hy(Yy;7Z). We assume that
d(vy) > max(0, g — 1) and that that 7 is monotone. This means that the homology class
I' := [y] € Hi(Yy; Z) satisfies the identity

(21) c1(Vy) +2PD(T) = ¢ [wy)

for some constant ¢ # 0. The constant c¢ is explicitly computable: pairing both sides of
with [X] shows that the constant ¢ = 247'(d — g + 1), where A := {, w. We note
that has a solution if and only if ¢ is rational, and that if has a solution, it
has solutions of arbitrarily high degree. Finally, let K := ker(w,) denote the subgroup
of all integral homology classes on which w, integrates to 0.

The PFH chain complex PFC,(¢,v) is defined to be the vector space over Z /2
freely generated by pairs © = («,Z) that we call anchored ECH generators. Here
a = {(a;,m;)} is an ECH generator such that [a] = [y] and Z is an element of
Hy(Yy, o, v)/ Ky (recall that Hy (Y, or,7y) is an affine space over Hy(Yy; Z)).

The differential d; is defined similarly to the ECH differential, although now we take
the relative homology classes of the holomorphic curves into account. Write M(«, 5, W)
for the moduli space of holomorphic currents from « to  that represent the class
W e Hy (Y, , B); let My(a, 3, W) denote the subspace of currents with ECH index k.
Fix a pair of anchored ECH generators © = (a, Z), ©' = (8, Z’). The matrix coefficient
of d; with respect to © and ©' is defined by the formula

<5@, @/> = #2 Ml(Oé,ﬁ, Z — Z’)/R

Write PFH, (¢, v) for the homology of the complex (PFC,(¢,7), ;). The PFH chain
complex and homology group carry some additional basic features that we now review.
There is a natural action of Hy(Yy;Z) on PFC.(¢,7,J); a class W € Hy(Yy; Z) acts
on a generator («, Z) by sending it to («, Z + W). This action commutes with the
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differential and so descends to an action on PFH,(¢,~) as well. The U-map on PFH is
also defined analogously to the U-map for ECH.

After choosing a framing of Vj, over 7, the PFH complex also comes equipped with a
Z-grading, which is defined for each anchored ECH generator by the formula

(22) 1(©) = c:(Z) + Q:(Z) + )] Z CZ.(
i k=1
The differential and U-map have degree —1 and —2 with respect to this grading. The
Hs-action shifts the grading as follows:

(23)  I(W-©) = [(©) + {e1(V,) + 2PD(T), W = [(©) + 24 (d— g + 1)f »
w

for any anchored ECH generator © and any W € Hy(Yy;Z). The last line uses

and our computation of the monotonicity constant above. The identity also shows

that the Z-grading is well-defined.

4.1.4. The U-cycle property. The analogue of a U-tower in ECH is a U-cycle. Assume
that ¢ is nondegenerate and rational and choose a monotone reference cycle v so that
PFH is well-defined. A nonzero element o € PFH, (¢, v, G) is U-cyclic of order m for
some integer m > 1 if
Umdn=9ths — (—m[X]) - 0.
It is known that every nonzero element of PFH is U-cyclic as long as 7 has sufficiently
high degree.

Proposition 4.1 (Existence of U-cyclic elements, [18]). Assume that ¢ is nonde-
generate and rational and fix a monotone reference cycle v. There exists an integer
do > max(0,g9 — 1), depending only on the Hamiltonian isotopy class of ¢, such that if
d(7y) = dy, then PFH,(¢,v) # 0 and every nonzero class is U-cyclic.

The following lemma is a “chain-level” version of Proposition .1}

Lemma 4.2. Assume that ¢ is nondegenerate and rational and fix a monotone reference
cycle v. There ezists an integer dy > max (0,9 — 1), depending only on the Hamiltonian
isotopy class of ¢, such that the following holds. Choose any monotone reference cycle
v such that d(v) = dy. Choose generic J and z € Yy so that the chain-level map Uy, is
well-defined. Then there exist positive integers mg and m; and a sequence {@j};”:ll of
nonzero generators of PFC,(¢,~) such that

<U}7’1;(d(7)*9+1)@j7 @j+1> £ ()
for each je{1,...,m; — 1} and
Uy @=9tDg,  memi[S] - ©1) # 0.
Proof. Suppose v has sufficiently high degree so that Proposition holds. Choose a
trivialization of the restriction of V}, to v and use this to define a Z-grading on PFH.
Fix a grading k for which PFHy(¢,v) # 0. Write Z, < PFCg(¢, ) for the space of

cycles of degree k, and By for the space of boundaries of degree k. The proof will take
3 steps.
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Step 1: This step shows that Z; and By have finite dimension over Z /2. By the
change of grading formula , it follows that for each ECH generator a there exists
at most one anchored ECH generator © = (a, Z) such that [(©) = k. Since ¢ is
nondegenerate, it has finitely many ECH generators representing any given homology
class in Hy(Yy;Z). This implies that PFCy(¢,~y) contains finitely many anchored ECH
generators, so it is a finite-dimensional Z /2-vector space. This implies that Z; and By,
have finite dimension as well.

Step 2: This step uses Proposition [4.1]to show that there is a nonzero cycle x € Z, fixed
up to a shift by an iterate of the U-map. Fix generic J and z so that the chain-level
map Uy, is well defined. Proposition implies that there exists an integer mg > 1
such that for any nonzero cycle x € Z;, there exists a chain z such that

(24) mo[X] - U}?f(d(V)_g+1)x =z + 0z

Let T be the restriction of mg[X] - T;(dm_gﬂ) to Zy. Then implies that
Im(7 — 1) € By. Since PFHy(¢,v) # 0, it follows that dim(Z;) > dim(By). This
implies that the operator T' — 1 has nonzero kernel and therefore there exists some
nonzero x € Z;, such that Tx = x.

Step 3: This step completes the proof. Expand the element x from the previous step
into a sum Zf\il x; where each x; is an anchored ECH generator. The desired cyclic
sequence {©;}7", of anchored ECH generators will be picked out from the r; using a
short combinatorial argument. Define a directed graph G as follows. The vertex set of
G is {1,..., N} and there is an edge from ¢ to j if and only if (T'z;, z;) # 0. We allow
edges to start and end at the same vertex. It is well-known that any directed graph
with no sources, i.e. vertices which have no incoming edges, has a directed cycle. Now,
G has no sources: this follows because T'vr = x implies that for each j, the identity
(T'z,x;) # 0 holds, which in turn implies that there exists some ¢ such that G' has an
edge from 7 to j. Thus, G has a cycle. Thus, there exists a set {2} 24 of anchored
ECH generataors such that

(25) <Tl';, m;’-1—1> 7 O’ <TI:77,17$/1> 7 07

for each j € {1,...,m; — 1}. For each j, set ©; := —(j — 1)mo[¥] - 7. Then, the
©, satisfy the conditions of the lemma by (27), since T = mq[X] - U;’f;(dm_gﬂ) by
definition. 0J

4.2. Proof of Proposition [2.2] We now suppose that ¢ is monotone, which we re-
call means ¢;(V}) = c[wg] for some constant ¢ € R. The proof of Proposition is
an immediate consequence of the following result, since the monotonicity condition is
preserved under Hamiltonian isotopy.

Proposition 4.3. Assume that ¢ is nondegenerate and monotone. There exists an
integer dy = max(0,g — 1) depending only on g and the Hamiltonian isotopy class such
that for any z € Y, not on any closed Reeb orbit, and generic J, there exists a standard
J-holomorphic curve uq : Cq — R xYy satisfying the following properties:

(a) (0,2) € ug(Cy).

(b) E(uq) < d.
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(c) Alug) < d-V2.
(d) x(Ca) = —2.

Proof. Fix dy > 0 so that Lemma[4.2 holds and fix any monotone reference cycle v with
degree d := d(vy) = dy. The proof will take 2 steps.

Step 1: Fix generic J and z so that the map Uy, is well-defined on PFC,(¢,7).
Let {©;}", denote the sequence of generators provided by Lemma Then, by
Lemma4.2, we obtain a sequence Cy, . . ., Cpygm, (d—g+1) Of J-holomorphic currents counted
by the U-map such that

maimo(d(y)—g+1)
Do [Ci] = momu[S] € Hy(Yy, a1, 1) = Ha(Yy Z)/ K.
i=1
By additivity of the action and of Jy we therefore obtain

mamo(d(y)—g+1) mamo(d(y)—g+1)
(26) > A(C;) = momy A, > Jo(C;) = 2moma (d(y) + g — 1).
i=1 i=1

In the equality for Jy, we have used the fact that ¢ is monotone, which implies that
c1(Vy) has zero pairing with K, together with the fact that Jy([X]) = 2(d(y) +¢g—1).
Step 2: This step finishes the proof of the proposition. Write S; for the set of 7 such
that A(C;) > d(v)~Y? and write S, for the set of i such that Jy(C;) = 3. Then, by
nonnegativity of the action of pseudoholomorphic curves, and , we have

(27) #S; < Amgmy (d())Y2.
Since the Jy index is bounded below by —1, the bound implies
(28) #52 < moma(3d(7) + g — 1)/4.

Thus, after possibly increasing dy, we have the strict inequality
#(Sl ) Sg) < moml(d(y) —qg+ 1)

This implies that there exists some 4 such that A(C;) < (d(v))™%? and Jy(C;) < 2.
Thus, the component uy : Cy — R xYy of C; containing (0, z) has A(ug) < (d(v))Y?
and x(Cy) = —2, by (6). It remains to show that &(uq) < d(7) : this follows since, as

dt is closed, the integral of dt over any level set of C; is equal to the pairing {(dt, [y]) =
d(v). O

5. INVARIANT SETS FROM LOW-ACTION HOLOMORPHIC CURVES

The purpose of this section is to prove Theorem [0} For the remainder of the section,
we fix a closed, smooth, connected, oriented manifold Y of odd dimension 2n + 1 > 3.

5.1. Notational preliminaries. Let us begin by reviewing the setup.

5.1.1. Stable constants. The statements and proofs below will involve several constants
which depend on Y, n, and J, where n is a framed Hamiltonian structure on Y and J
is an n-adapted almost-complex structure. We say that such a constant is stable if it
can be taken to be invariant under C'“-small perturbations of n and J.
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5.1.2. Geometry of symplectizations. Let D(Y') be the space of pairs (1, J) where 7 is
a framed Hamiltonian structure and J is an n-adapted almost-complex structure of
R xY. We equip D(Y) with the topology of C®-convergence. That is, a sequence
{(mk = (Mg, wr), Jk)} in D(Y) converges to (n = (A\,w),J) if and only if the sequences
{\r}, {wr}, and {Ji} converge in the C*-topology to A, w, and J, respectively. Choose a
pair (n = (A\,w), J) € D(Y). To this pair we associate the following translation-invariant
and J-invariant Riemannian metric on R xY":

g =da®@da+AQ\ +w(—,J—).

We fix notation for norms of tensors with respect to g. For any smooth tensor 7 on
R xY, write | T |, for its pointwise g-norm, which is a smooth function on R xY". Write
| T lly := supser xy | T |4(2) for the C° norm of T~ with respect to g. We fix notation
for the metric balls of g. Let dist, denote the distance function of g. Omitting the
dependence on g for brevity, we let

B,(2) == {we RxY | dist,(z,w) < r}
denote the closed metric ball of radius r > 0 centered at z € R xY.

5.1.3. Geometry of J-holomorphic curves. Fix a J-holomorphic curve u : C' — R xY.
We say u is compact and connected if the domain C' is respectively compact and con-
nected. We say u is generally immersed if the critical point set Crit(u) is discrete. This
is always true if C' is connected and u is not a constant map. We say wu is boundary
immersed if the restriction of u to dC is an immersion. We assume for the sake of con-
venience that any J-holomorphic curves is generally immersed and boundary immersed
unless stated otherwise.

We let v := u*g denote the pullback metric on C', which is defined at any point z € C
such that du(z) # 0. In particular, for a generally immersed curve, the metric is defined
outside of a discrete subset of points. Let o := u*\ denote the pullback of A. Let | T |,
and | 7 |, denote the pointwise and C° norms of a tensor 7 with respect to . For any
domain U < C', we define its area to be the integral of the volume form of v over the
set U\ Crit(u):

Area, (U) := f dvol, .
U\ Crit(u)

5.2. The connected-local area bound and its significance. The main estimate
required for the proof of Theorem [0] is a so-called “connected-local area bound”. In
this section we state this estimate, deferring the proof to Section [5.5] and then use it
to prove Theorem [6]

Given a J-holomorphic curve v : C' — R xY, any point ¢ € C', and any r > 0, let
S,(¢) denote the connected component of u~'(B,(u(¢))) containing (. Our estimate
gives an a priori bound on the area of S, (¢) assuming that A(u) is small and r is small.
The bound depends on the Euler characteristic of ', which is the primary reason why
Euler characteristic bounds are assumed in Theorem [Gl

Proposition 5.1 (Connected-local area bound for low-action curves). Fiz (n,J) €
D(Y). There exists stable constants e; = €z(n,J) > 0 and es = eg(n, J) > 0 such that
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the following holds. Let v : C' — R xY be a standard J-holomorphic curve such that
A(u) < €7. Then for any point ¢ € C', we have the bound

(29) Area, (S, () < &5 (X(C)* +1).

Proposition is inspired by [24, Thm. 5], the “asymptotic connected-local area
bound” for “feral” curves, a fundamental result in the new Fish-Hofer theory. There
are several new aspects here. The main point is that [24, Thm. 5] is an asymptotic result
for a fixed curve (of possibly unbounded Hofer energy, but finite action.) This allows
for the reduction to annular curves, whereas in our setting we need to consider much
more complicated topologies; new arguments are required for this. Another novelty is
the replacement of the asymptotic condition with a bound on the action instead. Both
here and in [24] one also has to be very careful with the constants to ensure stability.

Let us now explain why Theorem [0 follows from Proposition [5.1] The argument for
this appeared in the feral context in [24, Proposition 4.47].

Proof of Theorem[6. As the argument from here is essentially the same as [24, Proposi-
tion 4.47] except for minor modifications, we will only provide a sketch highlighting the
key points. Fix (n,J) € D(Y) and a sequence {(n, Jx)} in D(Y') converging to it. Fix a
sequence {uy, : C, — Y} of standard Ji-holomorphic curves such that limg_,. A(ug) = 0
and infj, x(Cy) > —o0. Let X < K(X) denote the limit set and choose any A € X.
When £k is sufficiently large, and therefore A(uy) is sufficiently small, it follows that
(aou)(Cr) = R, hence A is non-empty. To see that A = (—1,1) x A, where A € K(Y)
is R,-invariant, it suffices to show that for any z := (t,y) € A there exist some € > 0
such that
t+my)ed, (Lo (y)eA

for any 7 € (—e¢, €), where {¢'}1cr denotes the flow of R,. This is proved by a standard
application of Fish’s target-local Gromov compactness theorem (the version stated in
[24], Theorem 2.36]). Fix points (; € C) such that ug((x) — z and define local patches
Sk 1= Ses(Cx) < Cy. Proposition 5.1 gives a k-independent upper bound on Area, (Sy)
in view of the fact that A(uy) — 0, {x(C})} is uniformly bounded, and all constants are
stable. The surfaces S have uniformly bounded genus as well, because of the uniform
bound on x(Cjy). Thus, we are justified in applying target-local Gromov compactness,
and after passing to the limit obtain a non-constant holomorphic curve passing through
z and contained in A. The curve has action 0, due to the fact that A(uz) — 0, and
hence has tangent plane at any immersed point equal to Span(d,, R,), from which the
desired property follows. O

5.3. Properties of the limit set. Before diving into the proof of the connected-local
area bound, we provide a proof of Proposition from the introduction. We start with
a pair of lemmas. To state the first lemma, it is useful to fix the following notation.
For any (1, J’) € D(Y), any standard J'-holomorphic curve u : C' — R xY defines a
map

S. R — K(X),
s'—>TS-<u(C)m(s—1,3+1)xY).
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We make the following assertion:

Lemma 5.2. For any (v, J'") € D(Y') and any standard J'-holomorphic curve u : C' —
R xY, the map S, is continuous.

The next lemma is a purely topological statement.

Lemma 5.3. Let K be any compact and metrizable topological space. Let Z;, < K be
a sequence of connected subsets. Then there exists a subsequence W := Zy,. such that
their set of subsequential limit points is connected.

Lemma [5.2 has a short and elementary proof.

Proof of Lemma[5.7 Tt suffices to prove that for any sequence s, — s in R, we have
Su(sk) = Su(s) in K(X). The proof will take 2 steps.

Step 1: This step proves that limsup S,(six) € S.(s). Choose any point z = (t,y) €
limsup S, (sx) € X. Then any neighborhood of z meets infinitely many of the sets

Su(sk) = Ts, - (u(C) N (sk—1,8:+1) x Y).

After passing to a subsequence, there exists a sequence of points zy = (tx, yx) € Su(Sk)
such that ¢, — ¢t and y;, — y. Choose some small € > 0 such that ¢ + ¢ € (—1,1). Note
that 7_g, (2x) € u(C) for each k. Since s, — s and ¢, — t, it follows that

T_s(zk) eu(C)n[s+t—es+t+el xY

for sufficiently large k. Since u(C) is proper, the set on the right-hand side is closed.
The points 7_g, (z;) converge to 7_4(z), so it follows that

T_s(2))eu(C)ns+t—es+t+elxY culC)n(s—1,5+1)xY

and therefore that z € S, (s).
Step 2: This step proves that S,(s) € liminf S, (sx). Fix any z = (t,y) € Su(s). We
must show that any neighborhood of z has non-empty intersection with all but finitely
many of the sets S, (s;). Write zj, := 7,,_s(2) = (—sg+s+1t,y). For all sufficiently large
k, we have that —s;+s+t € (—1,1), so it follows that 7_g, (2;) € u(C)N(sp—1, s +1)x Y.
This implies z; € Sy (sk) for sufficiently large k. Since zp — z, we conclude that any
neighborhood of z meets S, (s;) for sufficiently large k.

0

Next, we prove Lemma [5.3

Proof of Lemma/[5.5, Let W; := Z; be any subsequence for which there exist points
w; € W; converging to some w € K. Let W denote the set of subsequential limit points
of {W;}. The proof that W is connected will take 4 steps.

Step 1: This step makes some simplifying observations. It suffices to show that, for any
pair of disjoint open subsets U and V' such that W < U 1V, we have either W < U or
W < V. Without loss of generality, we will assume that the point w € W is contained
in U, and then show that W < U.

Step 2: This step proves that W; < U u V for all sufficiently large j. We prove it by
contradiction. Assume that the claim is false. Then, after passing to a subsequence,

there exists for each j some wj € W; such that w} ¢ U 1V for any j. Since K is
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compact and metrizable, it is sequentially compact, and therefore a subsequence of
{w’} converges to some w' € W. However, the complement of U 11 V' is closed, so w’
does not lie in U 1 V', contradicting the initial assumption that W < U u V.
Step 3: This step proves that W; < U for all sufficiently large j. By Step 2 and the
fact that W; is connected for each j, we either have W; < U or W; < V for large j.
Since w; — w € U, it follows that W; has non-empty intersection with U for sufficiently
large 7, which implies W; € U.
Step 4: This step completes the proof. By Step 3, it follows that W lies inside the
closure U. Any open set intersecting U must intersect U, so V is disjoint from U. We
conclude that W < U.

OJ

We now give the promised proof of Proposition [1.9

Proof of Proposition[1.9. Fix (n,J) € D(Y) and a sequence {(ng, Jx)} in D(Y') con-
verging to it. Fix a sequence {uy : Cy — R xY} of standard Ji-holomorphic curves.
Recall that each curve wy defines a continuous map Sy := S, from R to K(X). Write
Zy, := Sk(R) for each k. By Lemma [5.2] Z is the image by a continuous map of a
connected space, so it is connected. Thus, {Z}} is a sequence of connected subsets of the
compact and metrizable space IC(X). The limit set X is equal to the set of subsequential
limit points of the sequence {Z;}. The proposition now follows from Lemma . O

5.4. Preliminaries from feral curve theory. It remains to prove Proposition [5.1]
which will take up the remainder of the paper. To do this, we need to first collect and
review some more preliminaries from the work of Fish—Hofer [24], which is the purpose
of this section.

5.4.1. Perturbed holomorphic curves. Many of the estimates in [24] are easiest when
the height function a o u of the pseudoholomorphic curve is Morse. Unfortunately, this
is not in general the case, so the notion of a “perturbed curve” was introduced there
to remedy this. More precisely, a perturbed J-holomorphic curve is a pair (u, f) where
u: C — R xY is a J-holomorphic curve and f : C' — R is a smooth function which is
compactly supported in the open subset C'\ (0C u Crit(u)). Perturbing w in the vertical
direction by f defines a new map

U:¢— esz(g)(f(Oaa)~

Write 5 := u*¢g for the induced pullback metric. Define an almost-complex structure 3
on C' as the unique almost-complex structure which is a y-isometry and coincides with
j on the complement of supp(f). We then define a one-form

~

&= —(Wdaoj)

on C. This should be thought of as a perturbation of a = u*A = —(u*da o j).

As in [24], the perturbation is subject to some quantitative controls. This is encoded
in the notion of a (d, €)-tame perturbation, which is found in [24, Definition 4.24]. We
will not repeat the precise definition of a (4, €)-tame perturbation, since we never make
explicit use of it, but we will recall its key attributes. The constant § > 0 controls the
support of f and the domain where a o @ is Morse. That is, f is supported outside
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a d/2-neighborhood of Crit(u), and a o u is Morse outside of a §-neighborhood. The
constant € controls the C? norm of f. We require ¢ to be smaller than a constant
depending on u and ambient geometry, and € to be smaller than a constant depending
on 4, u, and ambient geometry.

Given a tame perturbation (u, f), several explicit estimates are proved in [24], Section
4.1] relating the perturbed map @ to the unperturbed map u. We do not make direct
use of the majority of them, although they are key ingredients in the proofs of other
estimates from [24] that we cite. One estimate which we do use relates the perturbed
and unperturbed pullback metrics:

Lemma 5.4 ([24, Equation 4.3]). Fiz (n,J) € D(Y). Fiz a J-holomorphic curve
u:C — R xY and any (6, ¢€)-tame perturbation (u, f). Then we have

v/2 <7 < 2y,

where we recall that v = u*g and 7 = u*g.

We also remark that if the curve w is immersed, then we can use much simpler
perturbations, because there are no singularities for the perturbation to avoid. Call a
perturbation e-Morse if a o % is Morse over the entire domain C and if the C? norm of
f is smaller than e. Our main dynamical results (Theorems only require working
with embedded holomorphic curves. A reader who is solely interested in these results
can replace all instances of (d, €)-tame perturbations with e-Morse perturbations, where
€ is very small. Lemma is also straightforward if u is immersed. In this case 7 is
e-close to v in the C*! topology. In the non-immersed setting, some care is required
because v degenerates as it approaches Crit(u).

5.4.2. Tracts. Fix a perturbed J-holomorphic curve (u, f). Tracts and strips, intro-
duced in [24], are highly structured compact portions of the domain C. They are
important because they satisfy several geometric estimates. A tract in (u, f) is a con-

nected, compact embedded surface Cc C, possibly with boundary and corners, such
that:
(i) The boundary oC is disjoint from Crit(a o @);
(i) The boundary of C' decomposes as 0,C' U 0,C' where
(a) 0,C n 0,C is a finite set of corners;
(b) If it is non-empty, each component of 61}6’ is tangent to the gradient vector
field grads(a o u);
(c) The function a o @ is constant on each component of onC.

The sets é’hé and &,CN' are respectively called the horizontal and vertical boundaries
of the tract C.

5.4.3. Strips. For the proof of Proposition [5.12| at the end of this section, we need
to introduce the notion of a strip. Strips, which are closely related to tracts, were
originally defined in [24, Definition 4.17]; we write down a simpler version of their
definition which is sufficient for our purposes. A strip (in our sense) in (u, f) is an

embedded rectangle C < C, i.e. a compact domain of genus zero with four smooth
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FIGURE 1. A tract (blue) and a strip (red).

boundary curves meeting in four corners, satisfying the following two properties. First,
C' contains no critical points of a o. Second, the boundary oC decomposes as a union
0,C U 0,C with certain properties. The set 0,C is called the vertical boundary, and
consists of a pair of disjoint smooth curves tangent to grad(aow). The set 0nC is called
the horizontal boundary, and consists of a pair of disjoint smooth curves, which each
meet the segments of 0,C' at the corners. An illustration is provided in Figure . We
label the two components of ﬁhCN’ with the notation 62—”5’ The labelling is uniquely

determined by the condition Sngea,*é(a ow)(¢) > SUPgea;G(a ow)(¢). We call 6:6’ the

top horizontal boundary and 8;5 the bottom horizontal boundary.

The strips we use below are always defined by fixing a segment Z mapping into a
level set of a o @ and taking a union of gradient flow segments starting at points ( € Z.
The resulting strip C' will have 8;5’ =7 and 5;{6’ consisting of the endpoints of these
gradient flow segments.

5.4.4. FExponential area bound for tracts. In the classical theory of J-holomorphic curves
in symplectizations, area bounds are deduced from Hofer energy bounds. The following
result provides an alternative in the absence of Hofer energy bounds. It is arguably the
most crucial estimate in [24]. For example, it shows up in the proofs of Proposition
Lemma 5.6 and Lemma [5.7] below.

Proposition 5.5 ([24, Theorem 9]). Fiz (n,J) € D(Y). Let (u, f) be a (,€)-tame

~

perturbed J-holomorphic curve with domain C and let C < C be a tract of (u, f), for
which there exist constants a, > a_ such that

(i) (ao®)(C) = [a—,a.];

(ii) (a0 w)(0nC) N (a—,ay) = &;

(#ii) ay and a_ are reqular values of a o 1.
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Then there ezists a stable constant ¢; = ¢1(n, J) = 1 such that

(30) Area:,(CN‘) =< clecl(‘”_“)(f .
(aou)~1(a_)nC

-+ A(u)).

Given its importance, we briefly summarize the proof of Proposition [5.5]for the reader.
One can compute

Areay (C) = J w*da A O+ T'w = J (J &) dt + A(u).
c (ao)~1AC

a—

Write e(t) for the d-measure of (a o %)~'(t) N C. Whenever the interval [t_,t.]
contains no critical values, one proves the bound e(t, ) —e(t St s)ds+ 9, where 0

is some controllable error term. Using Gronwall’s 1nequahty, it follovvs that e(t) grows
exponentially in ¢. This is plugged into the computation above to deduce .

5.4.5. Strip estimates. We now state two technical estimates for strips of perturbed
J-holomorphic curves, which are used only in the proof of Proposition [5.12| at the end
of this section. Lemma/[5.6, which is a simpler version of a lemma from [24], shows that
the length of the bottom horizontal boundary of a strip is controlled by the length of
the top horizontal boundary, provided that the strip is not too tall.

Lemma 5.6 ([24, Lemma 4.21]). Fiz (n,J) € D(Y). Then there exists a stable constant
¢y = ca(n, J) = 1 such that the following holds. Let C' be a strip of a (6, €)-tame perturbed
J-holomorphic curve (u, f) such that aou is constant on 0, C' and
sup(a o #)(¢) — inf(a o U)(¢) < ¢
C€C~' CeC
Then we have the bound

J &éQJ &—FQCQJu*w.
o, C o c

Lemma [5.6|is proved using Proposition[5.5] To state the next lemma, we need another
definition. A strip C is rectangular if both 0;f C' are contained inside level sets of a o .
The lemma asserts that for any finite collectlon of strips which are not too tall or too
short, one of them contains a gradient flow line of ao@ of controlled length running from
the bottom horizontal boundary component to the top horizontal boundary component.

Lemma 5.7 ([24) Lemma 4.23]). Fiz (n,J) € D(Y). There exists a stable constant
c3 = c3(n,J) = 1 such that the following holds. Let (u, f) be a (9, €)-tame perturbed

J-holomorphic curve. Let {CN’k}Zzl be a finite set of rectangular strips of (u, f) satisfying
the following properties:

(i) ag = inf, & (a0 )(¢) is independent of k;
(i1) ar = supg, (a 0 @)(C) is independent of k;
(iii) a1 — ag < ¢z °;

(iv) Y0, Sék wrw < (a1 —aog) Yy Sa;ék a;

(v) Each of the strips {Ci}"_, are pairwise disjoint.
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Then there exists k € {1,...,n} and a smooth map q : [0, s] — Cy, such that
q(s) = grads(aou)(q(s)), (acuoq)(0) =aop, (actoq)(s)=a

and

lengths (¢([0, 5])) < es(ar — ag).

The proof of Lemma is rather intricate, since the lengths of gradient flow lines
could be heavily distorted in the areas where the norm of grad(a o @) is small. We refer
the reader to [24], Section 4.3.1] for details.

5.4.6. Action quantization. Fish-Hofer [24, Theorem 4] proved that a holomorphic
curve u : C' — R xY has a positive lower bound on its action near any interior global
maximum/minimum of the function a o u. Their lower bound depends on the genus of
C, which suffices for our intended applications. For the sake of a cleaner statement,
we note that the bound can be made genus-independent using the compactness theory
of J-holomorphic currents [48, Remark 5.20]. We now state the precise quantization
result.

Proposition 5.8 (|24, Theorem 4]). Fiz (n,J) € D(Y). Fiz any real number s > 0.
There exists a stable constant h = h(n, J,s) > 0 such that, for any compact, connected
J-holomorphic curve u : C — R x Y, we have

Au)=h>0

provided that the following properties are satisfied for some ag € R:

(i) Either mincec(a o u)(¢) or maxcec(a o u)(C) is equal to ag;
(i) (aou)(0C) N lag — s,a9 + s] = .

Proposition [5.8| is proved via a contradiction argument using Proposition [5.5| and
Fish’s target-local Gromov compactness theorem [23].

5.4.7. Geodesic distance lemma. The following elementary lemma is used in the proof
of Lemma [5.17 below.

Lemma 5.9 ([24, Lemma 4.29]). Fiz (n,J) € D(Y). There exists a stable constant
€ = €4(n,J) € (0,1/100) such that the following holds for any € < €;. Fach smooth
unit-speed immersion q : [0, T] — R xY such that
(i) A(q(t)) > 0 for each t € [0,T];
(1) € < §, A < 10¢;
(7ii) the set of t € [0,T] such that A(¢(t)) < 1/2 has Lebesgue measure at most €
satisfies the bound

disty(q(0), ¢(T)) > €/2.

The bound in Lemma [5.9] is proved by direct computation in geodesic local coor-
dinates y',...,y*"*!, with the additional condition that X is close to dy'. We need
to state Lemma here, instead of alongside Lemma [5.17], because the constant e,
appears in the statement of Proposition below.
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5.5. Proof of the connected local area bound. We now prove Proposition In
fact, this will be deduced from a more technical bound, Proposition [5.10} which we now
state. The statement requires defining a stable constant

(31) €5 =2 2 min(c; ', c3?, €4)
where ¢a, ¢3, €4 are the stable constants from Lemmas[5.6] 5.7, and [5.9] respectively.

Proposition 5.10. Fiz (n,J) € D(Y). Let ¢4 and €5 denote the stable constants from
Lemma and , respectively. There exists a stable constant cg = cg(n,J) = 1 such
that the following holds. Let u : C — R x Y be a compact, connected J-holomorphic
curve satisfying the following properties:
(L1) (aou)(0C) = {ag,a1} where a; > ay;
(L2) aop and ay are reqular values of the projection aou : C' — R;
(Lg) ap — Qo = 65/8,'
(L4) supcec(a o u)(() —infeeo(aou)(C) < €;
(L5) Alu) < 27%8¢ e5;
(L6) The set of all ¢ € (aou)*(ag) such that [u*A|,(C) < 1/2 has Lebesque measure
at most €4 in (aou)~*(ag), where Lebesque measure is defined using the pullback
metric .

Then for each ¢ € C', we have the bound
Area, (S¢(C)) < cs(x(C)* + 1)

Propositionm generalizes an estimate proved by Fish—Hofer (stated in [24, Proposi-
tion 4.30]). They made the additional assumption that the domain C' is homeomorphic
to a compact annulus. The main novelty in the proof of Proposition [5.10]is the introduc-
tion of combinatorial and topological arguments to deal with non-annular holomorphic
curves. Let us defer the proof for the moment and first prove Proposition [5.1| assuming
that Proposition holds. The idea is that, assuming the action of u is sufficiently
small, any point ( € C'is contained inside a surface satisfying the assumptions of Propo-
sition . In particular, to ensure that holds, we need the following technical
lemma, which asserts that most tangent planes of a low-action holomorphic curve are
nearly vertical.

Lemma 5.11. Write Q < R for the set of t such that i) t is a reqular value of aou and
i) the set of all ¢ € (aou)~'(t) such that |a|,({) < 1/2 has Lebesque measure greater
than e4. Then the Lebesque measure of Q is at most 2¢;* A(u).

Proof. This follows immediately from [24, Lemma 4.27] with parameters 6 = ¢, and
0=1/2. O

We now give the proof of Proposition [5.1}

Proof of Proposition[5.1 Let u : C'— R xY be a standard J-holomorphic curve. Pick
any point ( € C. We will show that, when A(u) is sufficiently small, there exists a

compact surface C © C' containing ¢ in the middle which satisfies [(L1)H(L6)| and has
Euler characteristic bounded below by x(C'). Proposition [5.10| then implies the area
bound. The proof will take 6 steps.
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Step 1: This step defines the surface C. To define the surface, we need to assume
that A(u) < 27%¢4e5. Now we choose a positive parameter r € (€5/8,€5/4) and set
ag := (aou)(¢) —r and a; := (aowu)(¢) +r. We fix r so that i) both ayg and a; are
regular values of a o u and ii) the set of all ' € (@ o u)~!(ag) such that |[u*A],(¢') < 1/2
has Lebesgue measure at most 4. There exists a full measure set of r satisfying i) by
Sard’s theorem, and a positive measure set of r satisfying ii) by Lemma and our
assumed bound on A(u), so an r satisfying both conditions exists.

Set Cp := (aou) " ([ag,a1]) = C. Write A for the disjoint union of compact compo-
nents of C'\ Int(Cy) and set C; := Cp u A. Let C be the connected component of C;
containing (.

Step 2: This step proves the two-sided bound

(32) 2> x(C) = x(C).

The upper bound follows from the fact that C is connected. To prove the lower
bound, we must show y(X) < 0 where ¥ := C'\ Int(C). Since C' is connected and
has empty boundary, it follows from the inverse function theorem that any proper
embedding of a surface with empty boundary into C' is surjective. It follows that each
connected component of ¥ must haveA at least one boundary component. Since each
connected component of ¥ intersects C, it cannot entirely consist of components of Cj
and A. It follows that each connected component of ¥ is non-compact. We have shown
that each connected component of ¥ is non-compact and has non-empty boundary, so
> has non-positive Euler characteristic. R
Step 3: Write @ for the restriction of u to C. This step verifies that u satisfies
and . Condition is satisfied becaause ag and a; are regular values of a o u.
Condition is satisfied because r € (e5/8, €5/4).

Step 4: Assume that A(u) < k(n, J, €5/8) where h denotes the constant from Proposi-
tion 5.8 This step verifies that @ satisfies [(L1)| and [(L4)| given this assumption.

Write

Ly :=sup(aou)(z) —sup(aou)(z), L-:= inf(aou)(z)— inf(aou)(z).
zeC zedC ze0C zeC

Note that both L, and L_ are positive by definition. By the contrapositive of
Proposition [5.8] it follows that both L, and L_ are at most ¢/8. Since (a o u)(¢) =
(a1 + ag)/2, we can rearrange the bounds for L, and L_ to conclude that

sup(ao)(z) = (a1 + ag)/2 — €5/8 > ap, inf (ao)(z) < (a1 + ag)/2 + €/8 < a;.
200 zeoC

Since (aou) (6’ ) € {ap, a1} by construction, the bounds above are sufficient to conclude

(L1)l To prove |(L4)| we use|(L1)|and the upper bounds for L, and L_:

sup(a o u)(z) — inf(aou)(2) = Ly + L + (a1 — ag) < €5/8 + €5/8 + €5/2 = €5.

2eC z€

Step 5: This step verifies that u satisfies [(L5)|and [(L6)l Both follow from our assump-
tions and the construction in Step 1.
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Step 6: By Proposition [5.10] we have the bound
(33) Area, (Si5() 0 €) = Areas (Ses16(0) < eo(x(C)* + 1)

where ¢y = ¢o(n, J) > 0 is a stable constant. The area bound then follows from (32)).
UJ

It remains to prove Proposition [5.10|and this will take up the remainder of the paper.
As the proof gets rather technical, let us start by providing a sketch of the argument.

Outline of the proof of Proposition[5.10,

Let w : ¢ — R xY denote a compact, connected J-holomorphic curve satisfying
(L1)H(L6)l We begin by constructing a tract decomposition of u (Proposition see
also Figure . Recall that a tract is a compact embedded surface with corners in C,
with horizontal boundary components mapping into level sets and wvertical boundary
components mapping into gradient flow lines of the function a o u. We show that,
after perturbing u slightly, the domain C' can be cut up into tracts with each boundary
component having controlled length. The existence of such a decomposition, for annular
domains, is itself implicit in the first five steps of the proof of [24] Proposition 4.30],
though the explicit statement we formulate here is novel and care is required to get the
right statement. Our proof mostly follows these steps, with a new argument to take
care of the fact our domain might not be annular; an expository emphasis is also to
isolate the key constants to clarify that they are stable. We defer it to the end of the
body of the paper.

The next step after construction of the tract decomposition is to bound the area of
each tract. We show that the number of vertical and horizontal boundary components
are each controlled by x(C) (Lemma as is the total Euler characteristic of all
the tracts (Lemma . Recalling that each horizontal boundary component has
controlled length, we conclude that each tract has a uniform bound on the length of
its entire bottom boundary, depending only on y(C') and ambient geometry. Applying
Proposition bounds the area of each tract by a constant depending only on x(C')
and ambient geometry.

The final step is to cover S, (¢) by a controlled number of tracts. This gives a bound
on its area since we have already bounded the area of each tract. A geodesic distance
argument that we learned from [24] implies that S, () cannot intersect both vertical
boundary components of a “rectangular” tract, defined (analogously to rectangular
strips) below. The topological lemmas mentioned above imply that most tracts are
rectangular. These results are combined with a graph-theoretic argument to prove the
desired covering bound.

5.5.1. Statement of tract decomposition. We now begin the process of making the above
outline rigorous. The first part is the statement of the tract decomposition.

Proposition 5.12. Fiz (n,J) € D(Y). Let u : C — R x Y be a compact, con-

nected J-holomorphic curve satisfying ((L6). There exists a fixed constant 6y =
do(u,n,J) > 0 such that the following holds. For any sufficiently small € > 0, there

exists a (8o, €)-tame perturbation (u, f) and a finite set of tracts {C,}N_, satisfying the
following properties:
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FIGURE 2. A schematic of the tract decomposition. One of the displayed
tracts has positive genus and several horizontal /vertical boundary com-
ponents.

(a) C = UYL, Ch. o

(b) For each k # k', the intersection Cy, n Cys is either empty or equal to a disjoint
union of components of (3U5'k.

(c) For each k, we have (a o 0)(0,Cr) = {ao, a1}

(d) For each k and each component L € mo(0,Cy) such that (ao)(L) = ag, we have
§, & < 10es. Moreover, if L is not a circle, then {, & > e4.

(e) For each k and each component L € w(0,Cy), we have
lengthy (L) < c3(a; — ap).

The simplest kinds of tracts in the decomposition are rectangular tracts, i.e. tracts
with zero genus, two horizontal boundary components, and two vertical components.
The tract decomposition could, however, contain tracts with positive genus and many
horizontal /vertical boundary components. See Figure [2 for a schematic of what the
tract decomposition might look like. We defer the proof of Proposition for the
moment, collecting some useful lemmas about the asserted tract decomposition first.

5.5.2. Tract topology bounds. Fix (n,J) € D(Y) and a compact, connected J-holomorphic
curve satisfying [(L1)H(L6)l Use Proposition to construct a perturbation (u, f) and

tract decomposition {Cy}Y_,. As mentioned above, the tracts Cy could have complicated
topology. The next two lemmas provide some a priori topological control. Lemma [5.13
bounds the number of horizontal and vertical boundary components of each tract in
terms of x(C').

Lemma 5.13. For each k, we have the bounds
(34) #m0(0,Ck) <2-2x(C),  #mo(@nCh) <4 —3x(C).

Proof. Fix any k. Write M := #Wo(oka) for the number of vertical boundary compo-
nents of C’k Let C' denote the closure of C \ C’k The proof will take 2 steps.
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Step 1: This step proves the first bound in . We assume without loss of generality
that M > 2. If M < 2, then the desired bound is immediate because by we have
x(C) < 0. It follows from the Mayer—Vietoris sequence that

M = x(Ck) + x(C) = x(C).
We show X(C’k) <1 and X(C) M /2. The upper bound on x(C}) follows from the
fact that X(Ck) is connected and has non-empty boundary The upper bound on X(C)
is deduced as follows. Each connected component of C is a tract which shares at least

at least two vertical boundary components with 5’k Therefore, C has at most M /2

connected components. Each connected component of C has non-empty boundary and
therefore has Euler characteristic < 1. Combine both of these upper bounds with the
identity for M and re-arrange to get the first bound in .

Step 2: This step proves the second bound in (34). Each connected component of

0hC~’k is either i) a compact interval which intersects exactly two components of (7UC~’k or
ii) a circle which is a connected component of dC. Any component of J,C}, intersects

exactly two components of éhCN’k, so there are M components of the former type, which
we showed in Step 1 is bounded above by 2 — 2x(C'). There are at most #m(0C)
components of the latter type. This gives the bound

#mo(0nCr) < 2 + #mo(0C) — 2x(C).
The second bound in (34)) now follows from plugging in the inequality #mo(0C) <
2 —x(C). O
The next lemma collects an elementary identity, and some useful related observations,
used in the proof of Lemma below.

Lemma 5.14. The Euler characteristic of the domain C' satisfies the following identity:
N

(35) 2(C) = Y 2x(Ch) — #m0(2,C1).

k=1
Moreover, for each k we have 2x(C~’k) #WO((?UCNYk), with equality if and only if either

(a) X(Ck) =1 and #Wo(é C’k) =2;

(b) C = Cy, and x(Cy) = #m0(0,C) = 0.
Proof. The proof of the lemma will take 3 steps. N
Step 1: This step proves . For each k, write My, := #m(0,Cy) for the number of
vertical boundary components of Cy. Write M for the number of gradient trajectories of
ao which are vertical boundary components of some Cj. It follows that 2M = >, M

because each gradient trajectory is a vertical boundary component of exactly two tracts.
The Mayer—Vietoris sequence then implies

2x(C) = > 2x(Ch) — 2M = > (2x(Cy) — My).

Step 2: Fix any k. The next two steps prove that 2x(Cy) < #m0(0,Cy) and character-
izes the equality cases. This step provides a proof assuming that #mo(0,Cx) = 0, i.e.
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the tract has no vertical boundary components. By Proposition (b) it follows that
C’k is both Closed and open in C'. Since C' is connected, it follows that C' = C’k From
Proposition |5 ), we conclude that that #WO((?Ck) > 2. This implies the bound

2v(Cr) < 0 = #m0(0,C),

with equality if and only if x(Cy) = #mo(3,Cy) = 0.

Step 3: This step has the same aim as the previous step, but in the case where
#mo(0y C’k) > (. In this case, we must have #m(0, Ck) 2, and that C’k has non-empty
boundary, so we conclude that

2x(Ci) < 2 < #m0(0,Ch).
Equality holds if and only if x(Cy) = 1 and #m(8,Cy) = 2. O

Remark 5.15. A tract C is rectangular if it has zero genus, two horizontal boundary
components, and two vertical boundary components. A tract is rectangular if and only
if X(é) =1 and #Wo(évé) = 2. The primary implication of the identity is that,
barring a degenerate case, the tract C~‘k is rectangular for all but at most —x(C') indices
k.

5.5.3. Tract coverings of controlled size. As above, fix a perturbed J-holomorphic curve

(u, f) and a tract decomposition {C;x}Y . The following lemma asserts that local
connected components can be covered by a controlled number of tracts.

Lemma 5.16. For any point ( € C, there exists a covering of the surface §465(C) =
U (Bye, (U(€)) by 2 — 3x(C) tracts.

Note that x(C) < 0 by so the number 2 —3x(C) from the lemma is indeed pos-
itive. Recall that a tract C' is rectangular if it has zero genus, two horizontal boundary
components, and two vertical boundary components. The proof of Lemma |5.16|requires
the following technical lemma, which asserts that §465(§ ) cannot intersect both vertical

boundary components of a rectangular tract. The proof of this lemma is similar to the
proof of [24] Lemma 4.35].

Lemma 5.17. For any point ¢ € C' and any k such that C’k 1 rectangular the surface
5465(0 does not intersect both vertical boundary components of Ch.

Proof. Let C = CN’;C denote any rectangular tract. Then C has two horizontal and
two vertical boundary components. Let L denote the bottom horizontal boundary
component, defined rigorously as the unique horizontal boundary component contained
in (a o)~ (ap). Then L is a compact interval connecting the two vertical boundary
components. Write 0L = (, — (_ where (4 are distinct points in C'. Write v+ for the
vertical boundary components intersecting L at (4 respectively. Write

d:= ZJirr€1£+ dist, (U(24), u(2-))

Z_€v—
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for the extrinsic distance between v, and «_. Since both v, and ~_ have length at
most ¢3(a; — ag) by Proposition [5.12(e), it follows from the triangle inequality that

d = dist, (u(¢1), u(¢-)) — 2¢3(ar — ap).
Let g : [0,T] — C denote the unique unit-speed parameterization of L such that

q(0) = ¢_ and ¢4 = ¢;. Apply [[L6)] Proposition [5.12|(d), and Lemma [5.9] to the curve
q := Uoq to bound dist,(u(¢4),u(¢-)) from below. We deduce the bound

d = 64/2 — 263(CL1 - CL()).

The right-hand side is seen to be strictly greater than 8e; using |[(L4) and the bound
€5 < 27% min(c3?, ¢4). We conclude that v, and v_ have extrinsic distance greater than

8es from each other. By the triangle inequality, they cannot both intersect §465(C ) for
any choice of ( € C. O

Lemma [5.16] is proved by combining Lemmas [5.14] and [5.17] with a combinatorial
argument.

Proof of Lemma[5.16. Let C1,...,Cp denote a minimal-size cover of §465(C ) by tracts.
Our goal is to prove the bound D < 2 — 3x(C). We assume without loss of generality
that D > 2. The proof will take 4 steps. R

Step 1: Write Z for the number of indices ¢ such that C; is rectangular. This step
observes that Z > D + x(C). This is a direct consequence of Lemma and Re-
mark [5.15] It is important that we assume D > 2 here, to avoid the degenerate case

stated in Lemma [5.14(b).

Step 2: This step constructs a connected graph G as follows. The vertices are
{1,...,D}. For any i # j, we add an edge between them if the tracts C; and C}
share a vertical boundary component. The connected surface Sy (() intersects each

of the tracts C; since they form a cover of minimal size. This implies that Ule C; is
connected, which in turn implies that GG is connected.
Step 3: Let @ be any vertex such that 6’, is rectangular. This step shows that ¢ is a
vertex of degree 1, which is equivalent to the assertion that §465 (¢) intersects exactly one
vertical boundary component of CA’l This assertion follows from applying Lemma m
to the rectangular tract @ and the fact that G is connected.
Step 4: This step uses Lemma and some basic graph theory to prove that D <
2 — 3x(C). For each i € {1,..., D}, let N; denote the degree of the vertex ¢ and M;
denote the number of vertical boundary components of CA’Z Note that N; < M; for
any i. By Step 3, we have N; = 1 and M; = 2 when @ is rectangular, so we get the
improved bound N; < M; — 1 in this case. We deduce the inequality

D R D
(36) 2x(C) < Y (2x(Ci) — M) <2D — Z — Y N;.

i=1 i=1

The first inequality uses and the assertion, proved in Lemma , that every

term on its right-hand side is < 0. The second inequality uses the observed bounds for
each M, above and the bound X(CA’z) < 1. The last two terms on the right are controlled
by D and x(C). We proved that Z = D + x(C) in Step 1. Since G is connected, it
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has at least D — 1 edges. The sum Zil N; is twice the number of edges of GG, so we
conclude that 27;1 N; = 2D — 2. Plug these bounds into to get an upper bound
on D:
2x(C)<2D - (D+x(C)—-(2D-2) = D<2-3x(0).
|

5.5.4. Proof of Proposition[5.10. We can now explain the proof of the technical bound
Proposition [5.10] contingent on Proposition [5.12]

Proof of Proposition[5.10. Use Proposition to construct a (, €)-tame perturbation
(u, f) and a tract decomposition {Cj}Y_,. Recall that & denotes the perturbed map
and that 7 = u*¢g denotes the perturbed metric. The proposition states that e > 0 can
be chosen to be arbitrarily small; we will choose € to be smaller than e5. This implies
that dist,(%(C"), u(¢")) < € for any ¢’ € C. It follows from this that Se,(¢) S Sie, ().
Using this observation and Lemma [5.4] it follows that

Area, (S, (C)) < Area,(Si, (¢)) < 2 Areas(Si, ().

So, to complete the proof it suffices to bound the area of §465(C) with respect to
the metric 7. By Lemma [5.13] each tract has at most 4 — 3x(C') horizontal boundary
components, and by Proposition [5.12(d) it follows that

J i a < 10e4(4 — 3x(0))
OnC N (ao)~1(ao)

for each k. The area bound in Proposition [5.5| shows for each k the bound
Areav(CN'k) < 2Area:,(C~’k) < (1 — x(0))

where ¢(n, J) > 0 is stable and k-independent. By Lemma [5.16] Sy, (¢) is covered by
2 — 3x(C) tracts, and the desired area bound follows. O

5.5.5. Proof of tract decomposition. To conclude, we need to provide the promised proof
of Proposition which will take up the remainder of the paper. As we explained in
our earlier outline of our arguments, a large part of the proof repeats arguments found
in [24], so we only provide sketches for much of this part. On the other hand, many
estimates from [24] and many of the assumptions |[(L1)H(L6)| are used in the proof, and
it is crucial to keep careful account of the relevant constants, so even in the sketched
parts of the proof we are very precise about the estimates and assumptions used.

Proof of Proposition[5.13. The proof of Proposition is simple when A(u) = 0,
and we begin by explaining this: in this case, the map u is a branched covering map
from C' onto [ag,a1] x vy, where 7 is a closed orbit of R,. Cut up 7 into intervals
{Z,})L, with length in (3e4,4€4) (or leave it be if it is shorter than that) such that the
segments [ag, a1] x {z} do not intersect a critical value of u for any ¢ and any endpoint
z € 0Z,. For each ¢, define Cy := u*([ag, a1] x Z;). The set {Cy}, is the desired tract
decomposition.

Thus, we can assume A(u) > 0, which will be a standing assumption for the rest of the
proof. Fix (n, J) € D(Y') and a compact, connected J-holomorphic curve u : C' — R xY
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satisfying [(L1)H(L6)} The proof takes 5 steps. The first four steps closely follow the
first five steps in the proof of [24, Proposition 4.30]. The stable constants ¢y, c3, €4 from
Lemmas , , respectively, and the stable constant e; from (31)) will appear
frequently.

Step 1: This step fixes a (0, €)-tame perturbation (u, f) where § and e satisfy suitable
bounds. We require § to be smaller than a stable constant depending on the map wu.
We also require § « ¢3 A(u), which is only possible because we are assuming A(u) > 0.
We then require € to be smaller than a constant depending on u and § and smaller than
the constant e€5. The proof that such a perturbation exists is given in Step 1 of the
proof of [24], Proposition 4.30].

Step 2: Steps 2-4 will show that for a large measure set of initial conditions ¢ € ¢, C,
there exists a solution of the gradient flow equation

(37) q:[0,T] = C, q'(s) = grads(ao)(q(s)), q0)=¢
terminating on ¢ C. As in [24], we define some relevant sets:

C = {¢" e Crit(u) [ (') = 6/2},
D := {¢' € Crit(u) |r(¢") < 6/2}.

The set D is a union of small disks of radius §/2, centered at the critical points of u,
and the set C is the union of the boundaries of these disks.

Step 2 and its proof in particular follows Step 2 of the proof of [24, Proposition 4.30].
Its goal is to show that solutions to only pass through D for a small @-measure set
of initial conditions. Calling this set of initial conditions D~ < ¢, C', we can prove the

bound
(39) f a < 4eg A(u).

Here is an outline of the proof of . We note that any gradient flow line starting

from a point in D~ must intersect the set C'. Then, using the gradient flow, we construct
a disjoint union of strips such that i) their top boundaries lie in C, ii) their bottom
boundaries lie in D~ and iii) the total a-measure of the bottom boundaries is close to
that of D~. The &-measure of C is < 0, which is by Step 1 much less than ¢y A(u).
Then follows from the height bound and Lemma [5.6]
Step 3: This step follows Step 3 of [24, Proposition 4.30] and its proof. The perturbed
height function a o @ is Morse on C'\ D. It follows that a o @ has finitely many critical
points in C'\ D and each one is non-degenerate. For each k € {0, 1,2}, write M, for
the set of index-k critical points of a o @ in C'\ D. The goal of this step is to show,
for each k, that the set of initial conditions in ¢, C' whose gradient flow lines limit to a
point in Mg, My, or My is small. It is clear that only a finite set 7~ < ¢, C of initial
conditions have gradient flow lines limiting to a point in My or My, so it remains to
control the a@-measure of the set of initial conditions whose gradient flow lines limit to
a point in M.

We denote this set by £~ < ¢, C' and assert the bound

(38)

(40) || o] <4dex Au).
-
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The proof of (40) is similar in style to the proof of . By the Morse lemma,
there exists for each point z € My a circle C, of arbitrarily small length, such that any
gradient flow line limiting to z intersects C, exactly once transversely. We choose such
circles C, such that their total length is at most ¢y A(u). Using the gradient flow, we
construct a disjoint union of strips such that i) their top boundaries lie in C, for some
z € My, ii) their bottom boundaries lie in £~ and iii) the total d-measure of the bottom
boundaries is close to that of £~. Then follows from the height bound and
Lemma [5.6
Step 4: This step follows Steps 4 and 5 of [24, Proposition 4.30] and their proofs. Tt
shows that for each closed interval 7 < ¢, C satisfying

J &> (a1 — ag)~" + 1065) Au)
T
there exists a solution ¢ : [0, T] — C to the equation
¢'(s) = grads(a o @)(q(s))
such that ¢(0) € Z, ¢(T) € ¢;"C, and
lengths (¢([0,T1])) < c3(ar — ao).

To prove this claim, we define 7 < 0, C to be the complement of theset D~ U E™ U F .
For any point ¢ € T, there exists a solution ¢ to such that ¢(0) = ¢ and ¢(T') € 0; C.
It follows from and that

J &:J a < 8¢y A(u).
GCNT D-LETLF-

It follows that there exists a finite set {7 };_, of pairwise disjoint intervals, each con-
tained in T, such that

N
(41) > J &> f & — 10¢y A(u).
k=1YTk 0, C
Now write Z' := Z n up_; T. It follows from that
J a = f & — 10 A(u) = (ay — ag) " Alu).
' I

The strips associated to the intervals T, N Z' satisfy the assumptions of Lemma
The only nontrivial assumptions to check are (iii) and (iv). Assumption (iii) follows
from and Assumption (iv) follows from the inequality above. Applying Lemma
produces the desired gradient flow line.

Step 5: This step uses the result of the previous step to complete the proof of the
proposition. Unlike the other steps, this step does not have any close counterpart in
the proof of [24, Proposition 4.30]. Choose a finite cover {£;}}L, of 0, C' satisfying the
following properties:

(1) Each £; is homeomorphic to a closed interval or a circle.

(2) Sl:j a < Hey.

(3) If £; is homeomorphic to a closed interval, then { ‘ a > 3¢y.
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(4) For any j # j', the interiors of £; and L, (relative to J, C') are disjoint.

For any j such that £; is homeomorphic to an interval, we define a sub-interval
Ej < L; as follows. Write ¢; and Cf for the left and right endpoints of £; with respect
to the orientation defined by &. Fix interior points QJQ, ¢ ]1 € L; such that C]O is to the left
of C} and the following holds. Write E?, E}, and E? for the sub-intervals with oriented
boundaries ¢ — (77, ¢j — (7, and {; — (j, respectively. Then we require

J . s (64, 264)

for each i € {0, 1,2}, and set Zj = Ejl-.

Note that by , and the bound ¢, < 2*e;* (see (31])), we have the bound
((a1 —ap)™" + 10c2) A(u) < €4. Therefore, the interval Zj satisfies the required length
lower bound in Step 4. It follows from Step 4 that for each j € {1, ..., M} such that £, is
homeomorphic to an interval, there exists a point (; € Zij and a gradient flow trajectory
q; : [0,T;] — C such that ¢;(0) = ;, ¢;(T;) € ¢;C, and the length of ¢;([0,7}]) is at
most c3(a; — ap).

Set

C:=C\ v; g;([0,T5])

and write {C’k}év . for the connected components of C. For each k € {1,..., N}, the
closure Ck of Oy, relative to C'is a tract. We verify that {C’k} - satisfy the propertles of
Proposition m Proposition m(a c) are evident from the construction. The upper
bound in Proposition @(d) follows from the fact that any L € my(0, Cy) is contained
in the union of at most two of the sets £;. The lower bound in Proposition [5.12(d)
follows from the fact that if L is not a circle, then L must contain either E? or L7 for
some j. Proposition (e) follows from the fact that for each k and each component
L' € m(0,C}), there exists some j such that L' = ¢;([0,1}]), and therefore L’ has length
at most c3(a; — ag).

O

APPENDIX A. VERIFYING ASSUMPTIONS

This short appendix colllects some elementary arguments verifying that important
classes of maps and flows satisfy the assumptions of our main results. In the case of
surface maps, we show that Hamiltonian surface diffeomorphisms and rational area-
preserving 2-torus diffeomorphisms are monotone. We start with Hamiltonian diffeo-
morphisms.

Lemma A.1. Any Hamiltonian diffeomorphism of a closed, oriented surface 3 is mono-
tone.

Lemma follows immediately from the next lemma and the easily verified fact
that the identity map is monotone.
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Lemma A.2. Let ¢ and ¢' be a pair of Hamiltonian isotopic area-preserving diffeo-
morphisms of a closed, oriented surface ¥ equipped with an area form w. Then ¢ is
monotone if and only ¢ is.

Proof. Choose a Hamiltonian function H : R /Z x¥ — R whose time-one Hamiltonian
flow is ¢~'¢'. Write {¢'};cr for the Hamiltonian flow of H. We use this choice to
identify the mapping torii of ¢ and ¢’

frijs =Yy,  (t.p)— (t, @) ()
We compute

faer(Vy) = ai(Ve),  frlwe] = [fawe] = [ws + dH A di] = [w,].
It follows from this computation that ¢’ is monotone if and only if ¢ is. OJ

Next, we show that any rational area-preserving torus diffeomorphism is monotone.

Lemma A.3. Write T := (R/Z)? and let w := dx A dy denote the standard area
form. Any area-preserving diffeomorphism ¢ : T*> — T? has ¢1(Vy) = 0. Therefore, if ¢
1s rational, then it is monotone.

Proof. Fix any area-preserving diffeomorphism ¢ : T? — T2, For any matrix A €
SL(2,7Z), write ¢4 for the torus map w — Bw. Any area-preserving diffeomorphism is
isotopic through area-preserving diffeomorphisms to some ¢ 4. Such an isotopy identifies
mapping torii and Chern classes. Therefore, it is sufficient to prove the lemma under
the assumption that ¢ = ¢4 for some A € SL(2,Z).

Write r7(A) := rank(ker(A — Id)). This is an integer between 0 and 2, inclusive. We
give separate proofs that ¢;(V,) = 0 depending on the value of r(A). If 7(A) = 0, then
it follows from the Mayer—Vietoris sequence that by(Y,) = 1 + 7(A) = 1 and that the
second homology group of Y is generated by a torus fiber. The class ¢;(V}) has zero
pairing with a torus fiber, so ¢;(Vy) = 0.

Now, assume 7(A) > 1. Then the matrix A fixes some nonzero vector v € R?.
Therefore, the differential of ¢ = ¢4 fixes the constant vector field v on T?. This vector
field defines a non-vanishing section of the vertical tangent bundle V4. We conclude
that ¢;(Vy) = 0. O

Next, we consider flows on 3-manifolds. We show that the geodesic flow of a Finsler
surface is the Reeb flow of a torsion contact form.

Lemma A.4. Let F be a closed Finsler surface. Then there exists a torsion contact
form a on the unit tangent bundle SF whose Reeb vector field generates the geodesic

flow.

Proof. We recall, following [21], how to realize a Finsler geodesic flow as a Reeb flow of
a contact form. Let v : TF — R denote the Finsler norm and set H := v?/2. Define a
1-form o on T'F by the local coordinate expression Y-, 0, H dp?, where p’ and ¢’ = 0,5
denote local coordinates on the base and fiber. It is proved in |21, Section 2| that «
restricts to a contact form on SF and its Reeb vector field generates the geodesic flow.

Now, we claim that, when we endow it with a complex structure J, the 2-plane bundle
¢ := ker(«) has torsion Chern class. Our proof strategy is to construct a flat J-linear
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connection on &. This suffices to prove the claim, because the cohomology class of the
curvature is equal to the image of ¢;(§) in H*(SF;R). Write ¢ for the real line bundle
defined as the tangent bundle along the fibers of SF'. It follows from the definition of
« that £ is a sub-bundle of &, so £ splits as an internal direct sum ¢ @ J¢ of real line
sub-bundles.

We observe that the real line bundle ¢ admits a flat connection V; this connection
induces a candidate connection V on ¢ as follows. Any section s of ¢ splits uniquely as
a sum sg + Js; where sg and s; are sections of £. Then, define Vs := (Vsg) + J(Vsy).
The connection V is J-linear by definition. It remains to prove that it is flat. Observe
that V is flat if and only if the identity of operators

VvV = ViwVy = Vi) =0

holds for any pair of vector fields V and W on SF'. Testing the left-hand side against
any section s = sg + Jsq, we verify this identity directly:

(vvvw — VwVy — v[V,W]> "S = (VVVW —VwVy — vWW])) $%0

e (vvvw ViV — V[V,W]> 8

= 0.
The first equality follows from expanding s = sg + Js; and simplifying. The second
equality follows from the fact that V is a flat connection on ¢. 0J
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