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Introduction

A major mathematical pursuit is that of understanding objects that have a simple local structure while
having a non-trivial global structure. For example, consider the planet Earth. A human observer, perhaps
standing at a street corner somewhere in Montana and looking out at the horizon, will see a flat expanse
of land. It is not unreasonable given only this observation to conclude that the Earth is a flat plane. In the
language of topology, the claim is that Earth is homeomorphic to the Euclidean plane R2.

However, it is known at this point that the Earth is not a flat plane, but rather a round sphere. The error
in the observer’s judgement is that their field of view is limited. They see only a small patch of the land
on the Earth, which indeed is homeomorphic to an open set of R2. Therefore, referring back to the initial
statement of the introduction, one can conclude that Earth is locally homeomorphic to R2, but not globally
homeomorphic to R2.

Generalizing to higher dimensions, a topological space that is locally homeomorphic to the n-dimensional
Euclidean space Rn and satisfies some other technical assumptions is called a n-dimensional manifold or a
n-manifold. By the above discussion, it follows that the surface of the Earth is a 2-dimensional manifold.

An important class of manifolds are those known as smooth manifolds. Roughly, these are manifolds
that can be “smoothed out” to not have any sharp jagged points or seams or anything of the sort. The
exact manner in which the manifold is “smoothed out” is called its smooth structure. Smooth manifolds
are natural objects to study. For example, the round 2-sphere (the surface of the Earth) is a smooth 2-
dimensional manifold.

Manifolds that do not have any distinguished smooth structure are generally denoted as topological
manifolds. A major goal in topology is to classify all of the different types of n-dimensional topological or
smooth manifolds that can occur. In practice, the manifolds are restricted to be compact, oriented, and without
boundary to make this somewhat tractable.

This thesis discusses in particular some of the mathematics surrounding the study of smooth 4-dimensional
manifolds. Smooth manifolds of dimension 4 hold an intriguing place in the classification problem de-
scribed above.

It is often stated that dimension 4 is the middle ground between “rigidity” and “fluidity”. For exam-
ple, thanks to the work of Perelman ([MT07]), it is now known that 3-manifolds are “rigid”. They can be
decomposed into some finite number of geometric pieces, each of which are one of eight distinct types. Fur-
thermore, there is no distinction between topological and smooth 3-manifolds. Any topological 3-manifold
can be “smoothed out” in a unique fashion ([Hat]).

On the other hand, manifolds of dimension ě 5 exhibit rather “fluid” behavior. An example of the
usefulness of extra dimensions is as follows. Two lines in R2 will always intersect in a point except for
the very special case in which they are parallel. However, in R3, two lines will “almost never” intersect at
all! Namely, given any two intersecting lines in R3, a small translation of one of the lines in any direction
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will result in two non-intersecting lines. This “fluidity” was used by Stephen Smale to prove the Poincaré
conjecture for both topological and smooth manifolds of dimension 5 or greater ([Sma61]).

In four dimensions, topological and smooth manifolds are very distinct objects and behave very dif-
ferently with respect to the above framework. Topological 4-manifolds exhibit “fluid” behavior, and it was
demonstrated by Freedman ([Fre82]) that the Poincaré conjecture holds for topological 4-manifolds as well.

The following year, Donaldson showed on the other hand that smooth 4-manifolds exhibit more “rigid”
behavior ([Don83]). The intersection product on the middle-dimensional homology H2pX;Zq of a topo-
logical 4-manifold X induces a bilinear form on H2pX;Zq known as the intersection form of X . Donaldson
showed that, if X is smooth and has a definite intersection form, then the intersection form must further-
more be diagonalizable over the integers. This is a rather severe restriction on the topology of smooth
4-manifolds with definite intersection form, and led to a host of examples of topological 4-manifolds that
could not be “smoothed out”, as their intersection form did not satisfy the required property.

The techniques used by Donaldson arise from a field of mathematics known as gauge theory. Roughly,
gauge theory seeks to understand smooth 3- and 4-manifolds by examining geometric objects called con-
nections on these manifolds. These connections are generally fixed to satisfy some first-order, elliptic partial
differential equations. Furthermore, two connections are identified if they are what is known as gauge-
equivalent, a notion that will be explicitly defined later on. The space of gauge-equivalence classes of con-
nections satisfying these equations then often has the structure of a finite-dimensional manifold, which can
be used to understand the original manifold of interest.

The equation that was used by Donaldson is called the anti-self-dual equation. This thesis does not discuss
these equations, but rather discusses a topic in the theory of the Seiberg-Witten equations. These equations
were introduced in 1994 by Seiberg and Witten ([SW94]). In addition to a connection, these equations in-
volve another geometric object known as a spinor. The Seiberg-Witten equations are from an analytical
standpoint much easier to work with than the anti-self-dual equation, and as such their introduction pre-
cipitated a flurry of works that simplified earlier results acquired using Donaldson theory, as well as proved
new results.

Although it will be expanded upon later on, it is sufficient for now to know that, given a compact,
oriented smooth 4-manifold X with an additional piece of data known as a spinc structure, analysis of the
Seiberg-Witten equations produces an integer known as the Seiberg-Witten invariant of X . The construction
of the Seiberg-Witten invariant involves a couple of auxiliary pieces of geometric data, namely a Riemannian
metric on X and a small perturbation of the equations. It is well-known, and will be briefly discussed in
Chapter 1, that ifX satisfies a certain topological condition then the Seiberg-Witten invariant is independent
of these geometric choices, i.e. it depends only on the topology and smooth structure of X .

This thesis discusses work done on the case where X does not satisfy this topological condition. In this
case, the Seiberg-Witten invariant most certainly depends on the choice of metric and perturbation on X .
It is desirable to modify the construction of the Seiberg-Witten invariant somehow so that it is once again
independent of the choice of metric and perturbation.

The thesis begins with some preliminary content in Chapter 1. It is known that the Seiberg-Witten
invariant can be “fixed” in the sense of the above discussion when X satisfies two topological assumptions,
known as “assumptions (A1) and (A2)”. This chapter defines and discusses these two assumptions in detail,
and gives a short exposition of the construction of the Seiberg-Witten invariants.

Chapter 2 presents in detail the construction of the modified Seiberg-Witten invariant (denoted by
λSW pXq) for a 4-manifold X satisfying assumptions (A1) and (A2). This was done by Mrowka, Ruber-
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man, and Saveliev ([MRS11]), and the exposition follows that of their paper.
A significant body of work by Mrowka, Ruberman, Saveliev, and Lin towards calculating the invariant

λSW pXq has been released since the publishing of the initial construction in [MRS11]. Several of these
developments are surveyed in [RS13].

Chapter 3 presents a very recent development in this theory. In a December 2017 preprint ([LRS17]), Lin,
Ruberman, and Saveliev proved a formula relating λSW pXq to invariants arising from the theory of Seiberg-
Witten-Floer homology, a homology theory for 3-manifolds first constructed in full generality by Kronheimer
and Mrowka in 2007 ([KM07]). The chapter starts with a brief exposition of Seiberg-Witten-Floer homology
and continues to give an exposition of the main theorem of [LRS17]. The chapter, and the thesis, conclude
with a application of this result to the study of positive scalar curvature metrics on 4-manifolds.

Recommended background: The reader may have noticed the steady encroachment of technical content
into this introduction. Indeed, there are a good number of mathematical concepts and topics that the reader
is recommended to be familiar with in order to get the most out of this exposition. First of all, the lan-
guage of algebraic topology is used freely without exposition. The book [Hat02] provides an encyclopedic
resource for the particulars of homology and cohomology, although many more concise lecture notes can
be found scattered around the internet. The book [MS74] is an excellent resource for information on char-
acteristic classes of vector bundles, which are also mentioned at several points. Second, the reader should
be familiar with the basics of smooth manifolds, differential forms, vector bundles, connections and Rie-
mannian geometry, as in [Tau11]. Third, it is useful to understand the basic constructions of spin geometry
and the Dirac operator, which are discussed in [Mor95]. Fourth, the reader should be at least somewhat fa-
miliar with Sobolev spaces and (elliptic) differential operators. The material in Chapters 5 and 6 of [Eva10]
should be more than sufficient when coupled with the understanding that the notions of Sobolev spaces
and elliptic differential operators extend to the more general setting of sections of vector bundles.
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Chapter 1

Preliminaries

In this chapter, we introduce our main objects of study, smooth 4-manifolds with the integral homology of
S1 ˆ S3 (known as “assumption (A1)”) that have an embedded integral homology three-sphere generating
the third integral homology group (known as “assumption (A2)”).

LetX be a smooth 4-manifold satisfying assumptions (A1) and (A2). The first section gives the construc-
tion of a few different non-compact manifolds associated to X . The second section gives a brief overview
of the Seiberg-Witten invariants of 4-manifolds. The third section then discusses specifically the Seiberg-
Witten invariants of X , and how the topological assumptions on X simplify the structure of the space of
solutions to the Seiberg-Witten equations.

1.1 The topology of manifolds satisfying (A1) and (A2)

In this thesis, we will explore the Seiberg-Witten theory of closed Riemannian four-dimensional manifolds
X satisfying two conditions.

(A1) The manifold X must have the integral homology of S1 ˆ S3. Explicitly, the integral homology of
X is

HipX;Zq “

$

&

%

Z i ‰ 2

0 i “ 2
.

(A2) For a manifold X satisfying (A1), the third homology group H3pX;Zq » Z is generated by the
fundamental class of a smoothly embedded integral homology 3-sphere. We will denote this homology
3-sphere by Y throughout the article.

We present a couple of examples below of manifolds satisfying (A1) and (A2)..

1. The manifold X “ S1 ˆ S3 clearly satisfies both conditions. More generally, we can take X “ S1 ˆ Y

for any integral homology 3-sphere Y .

2. Mapping tori of homology 3-spheres form another prominent class of examples. Given a homology 3-
sphere Y and a self-diffeomorphism τ : Y Ñ Y , we may form a closed 4-manifold by taking cylinder
r0, 1s ˆ Y and glueing one end to the other by the identification p0, yq „ p1, τpyqq. This manifold
is known as the mapping torus of the map τ , and a standard calculation using the Mayer-Vietoris
sequence verifies that it satisfies both (A1) and (A2).
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If a manifoldX satisfies (A1), then from standard covering space theory it has a connected infinite cyclic
cover rX . This infinite cover admits an explicit topological construction.

By the tubular neighborhood theorem, the embedded submanifold Y has a neighborhood N Ă X that
is diffeomorphic to p´1, 1q ˆ Y with Y identified with t0u ˆ Y . It follows from this local description of
the manifold near Y that the space W “ XzY has the structure of a manifold with boundary Y Y Y .
Furthermore, it is clear from a calculation with the Mayer-Vietoris sequence that W is connected. In other
words, W is a cobordism from Y to itself. Furthermore, the orientation of X induces an orientation on W

that makes it an oriented cobordism from Y to itself.
The construction of such a cobordism W is indeed just a rigorous formulation of the action of cutting

open X along Y , and is referred to as such in the literature. Since W has boundary Y Y Y , we can glue W to
itself along one of these boundary components to produce a new manifold with boundary Y Y Y , denoted
by W YY W .

We can also take Z-many copies of W labeled as Wi for all i P Z. Then, the infinite cyclic cover rX is the
infinite gluing

¨ ¨ ¨W´1 YY W0 YY W1 YY W2 ¨ ¨ ¨ .

There is a natural transformation T : rX Ñ rX that takes Wi to Wi`1. We recover our manifold X from rX

by quotienting out by the action of T , and furthermore the quotient projection is our desired covering map.
The transformation T then generates the deck group of this covering.

Figure 1.1: The infinite cyclic cover rX .

Our assumption of (A2) simplifies the topology of W , and therefore that of rX . This is described in the
following theorem.

Theorem 1.1.1. Let X be a manifold satisfying both (A1) and (A2). Then the cobordism W constructed as above has
vanishing first, second and fourth integral homology and H3pW ;Zq “ Z.

Proof. It is immediate that H4pW ;Zq “ 0 by Poincare duality for manifolds with boundary.
Let N » p´1, 1q ˆ Y be an open topological collar neighborhood of Y . Then W Y N “ X , and the

Mayer-Vietoris sequence yields a long exact sequence in integral homology:

¨ ¨ ¨ Ñ HkpY Y Y q Ñ HkpW q ‘HkpY q Ñ HkpXq Ñ Hk´1pY Y Y q Ñ . . .

Setting k “ 1 and using reduced homology, it is found that there exists a long exact sequence of the
form:

0 Ñ H1pW q Ñ ZÑ Z‘ ZÑ ZÑ 0.

Any homomorphism from Z into Z ‘ Z must be either injective or equal to the zero map. Since the
cokernel of this map is isomorphic to Z, it must be injective and H1pW ;Zq “ 0.

Now set k “ 2. Both H2pY q and H2pXq are equal to 0, so it is immediate from the above sequence that
H2pW q “ 0 as well.
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Pick a copy of Y in W . The inclusion map H3pY ;Zq Ñ H3pX;Zq then factors through the inclusion
maps H3pY ;Zq Ñ H3pW ;Zq and H3pW ;Zq Ñ H3pX;Zq.

The inclusion map H3pY ;Zq Ñ H3pW ;Zq is injective, so it follows that the inclusion map H3pW ;Zq Ñ
H3pX;Zq is injective as well. It follows that H3pW ;Zq » Z.

Remark 1.1.2. We have shown that W is a homology cobordism from Y to itself. As a result, the study of
manifolds satisfying (A1) and (A2) has applications to understanding the homology cobordism group Θ3

Z of
integral homology 3-spheres. This is the abelian group generated by the integral homology 3-spheres, with
two such spheres said to be equivalent if they are homology cobordant. Although the proof is outside
the scope of this thesis, the main result of [LRS17] described in Chapter 3 is used to construct a sufficient
topological condition for an element of Θ3

Z to have infinite order.

We can define a couple of other non-compact manifolds related to X .
Just as the infinite cyclic cover rX is the Z-fold gluing

¨ ¨ ¨W´1 YY W0 YY W1 YY W2 ¨ ¨ ¨ ,

we may define a non-compact manifold with boundary Y as the gluing

W0 YY W1 YY W2 ¨ ¨ ¨ .

We will denote this manifold by X`.
Next, pick any spin 4-manifold with boundary Y , which we will always denote by Z. Then, we may

glue Z to X` to form a non-compact manifold that we will always denote by Z`.

Figure 1.2: The manifolds Z, X`, and Z`.

The triviality of the oriented spin cobordism group in three dimensions ([Sti03]) guarantees the existence
of Z. We will also always assume that Z is simply-connected, which can always be achieved by performing
surgery along loops in Z.

Throughout this section, we have discussed the topology of manifolds satisfying (A1) and (A2). Another
interesting question is to determine whether there are manifolds satisfying (A1) that do not satisfy (A2).

In fact, as was communicated to the author by Daniel Ruberman, a variety of examples can be con-
structed using cyclic branched covers of knots with the appropriate Alexander polynomial. This is done by
taking the mapping torus of the generator of the deck group of this branched cover. One concrete example
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of a branched cover that can be used in this construction is the six-fold branched cover of the trefoil knot,
and more generally the pq-fold branched cover of the pp, qq-torus knot.

1.2 The Seiberg-Witten invariants

By now there are countless expositions on the Seiberg-Witten invariants. Therefore, this section has been
written more towards the aim of fixing notation and discussing some important properties of the invariants.

For a compact but complete introduction to the Seiberg-Witten invariants, the author recommends
[Mor95]. The book [Sal99] is far more wide-ranging in its coverage and serves as a useful reference.

Fix X to be a closed, oriented Riemannian 4-manifold.

Definition 1.2.1. The data of a spinc structure on X consists of a pair of unitary rank two complex vector
bundles S`, S´ on X along with a Clifford multiplication action ρ : TX Ñ HompS, Sq where S is the direct
sum S` ‘ S´.

The Clifford multiplication ρ identifies TX isometrically with the subbundle supSq Ă HompS, Sq with
the inner product pA,Bq “ Trp 1

2A
˚Bq. Furthermore, Clifford multiplication is an odd transformation in that

it sends sections of the subbundle S` to sections of S´ and vice versa.

We extend the Clifford multiplication to one-forms by identification with the metric. Following that, we
can extend it to differential forms of any degree by the rule

ρpα^ βq “ ρpαqρpβq ´ p´1qdegpαqdegpβqρpβqρpαq.

If ω is a self-dual two-form, then it follows that Clifford multiplication by ω is an endomorphism of S`
that restricts to zero on S´.

The bundle S is known as the spinor bundle and its sections are spinors. Sections of S` and S´ are called
positive and negative spinors respectively.

Let A be a unitary connection on the determinant line bundle of S`. The connection A has a curvature
two-form denoted by FA. As this is a two-form on a four-dimensional manifold, it can be decomposed into
self-dual and anti-self-dual parts FA “ F`A ` F´A that are respectively ˘1-eigenvectors of the Hodge star
operator.

It is also a quick exercise in spin geometry to show that A induces a covariant derivative ∇A on the
spinor bundle S.

Definition 1.2.2. The Dirac operator associated to a spinc connection A is the composition of operators

C8pSq
∇A
ÝÝÑ C8pT˚X b Sq

ρ
ÝÑ C8pSq.

The Dirac operator is first-order, self-adjoint and elliptic. With respect to the bundle decomposition, it
splits into two operators

D`A : C8pS`q Ñ C8pS´q

and
D´A : C8pS´q Ñ C8pS`q

that are adjoints of each other.

8



Fix a spinc structure s on X . Let the configuration space CpXq be the space of pairs pA,ϕq where A is a
unitary connection on the determinant line bundle and ϕ P C8pS`q is a positive spinor.

A configuration pA,ϕq is a solution to the Seiberg-Witten equations if

1

2
F`A “ ρ´1ppϕb ϕ˚q0q,

D`Aϕ “ 0.

The final piece of notation that we are missing is the definition of the expression pϕ b ϕ˚q0. The ex-
pression ϕ b ϕ˚ is a section of the bundle S` b S˚` which is identified with HompS`, S`q. The subscript
indicates the removal of the trace, explicitly written as

pϕb ϕ˚q0 “ ϕb ϕ˚ ´
1

2
|ϕ|2 ¨ IdS` .

The Seiberg-Witten equations exhibit some nontrivial symmetry arising from gauge transformations. In
our setting, the group of gauge transformations GpXq is the space of smooth maps from X to S1. A gauge
transformation u P G acts on configurations by

upA,ϕq “ pA´ 2u´1du, uϕq.

One can then see that the Seiberg-Witten equations are gauge-invariant: If pA,ϕq solves the Seiberg-
Witten equations then upA,ϕq does as well.

Write BpXq “ CpXq{G for the orbit space of configurations under the action of the group of gauge trans-
formations. Examining the action, we find a configuration pA,ϕq has trivial stabilizer when ϕ is nonzero
and a stabilizer of S1 corresponding to the constant gauge transformations when ϕ “ 0. Configurations
satisfying the latter are called reducible, and prevent BpXq from being a Fréchet manifold. However, we see
that the space B˚pXq Ă BpXq consisting of gauge orbits of irreducible solutions is a Fréchet manifold.

The words “Fréchet manifold” may be off-putting to some. Indeed, one generally works with Sobolev
completions of the spaces CpXq and BpXq (see Chapter 9 of [KM07]). Choosing a base connection A0, the
affine space of unitary connections on the determinant line bundle is identified with the space of imaginary-
valued one-forms on X . Then, using the metric and the standard metric connection one can define a L2

k-
Sobolev norm on the space of connections and construct its completion. The covariant derivative ∇A0

can then also be used to define an L2
k-Sobolev norm on the space of positive spinors. These form the

configuration space CkpXq, and the quotient by the action of the group of gauge transformations is BkpXq
with irreducible locus B˚k pXq.

The space CkpXq is a Hilbert space, while the space B˚k pXq is a Hilbert manifold.
For the purposes of this thesis, we will omit the subscript and assume by default that we are working

with Hilbert completions of sufficiently high Sobolev regularity. The word “Fréchet” will not be used
henceforth, and everything will be a Hilbert space or Hilbert manifold.

Let g be the underlying Riemannian metric on X . Write MpX, gq Ă BpXq for the space of gauge orbits
whose elements satisfy the Seiberg-Witten equations. The notation is given in this manner to emphasize
the dependence on the metric. One may wonder if MpX, gq is also a manifold. From the above discussion,
this is a possibility only when there are no reducible solutions.

To get rid of reducible solutions, it is often necessary to perturb the Seiberg-Witten equations. Fix ω to

9



be any imaginary self-dual two-form. Then the perturbed Seiberg-Witten equations are

1

2
F`A “ ρ´1ppϕb ϕ˚q0q ` ω,

D`Aϕ “ 0.

We will write MpX, g, ωq Ă BpXq for the moduli space of solutions to the Seiberg-Witten equations
perturbed by ω, where g is the Riemannian metric. Our introduction of the metric into this notation will
become more apparent after the following discussion. It is also necessary to note that the spaceMpX, g, ωq is
independent of the choice of Sobolev regularity. By a “folklore theorem” presented in [Mor95], any solution
of the Seiberg-Witten equations is gauge-equivalent to a smooth solution.

The equations take a simpler form in the case where ϕ “ 0, which allows one to deduce the following
theorem about reducible solutions.

Theorem 1.2.3. Let b`2 pXq be the dimension of a maximal positive-definite subspace of H2pX;Rq with respect to the
intersection form. Then if b`2 pXq ě 1, there are no reducible solutions in MpX, g, ωq for all ω in the complement of a
codimension b`2 pXq linear subspace of the imaginary self-dual two-forms.

Proof. Suppose there exists a reducible solution in MpX, g, ωq. Choose pA, 0q P CpXq to be a representative
of this solution.

Then the connection A satisfies the equation

1

2
F`A “ ω.

Let η be any closed, self-dual two-form with corresponding de Rham cohomology class rηs. The wedge
product of a self-dual and an anti-self-dual two-form is always zero.

Then we have
ż

X

ω ^ η “

ż

X

1

2
F`A ^ η

“
1

2

ż

X

FA ^ η

“
π

i
pc1pS`q ^ rηsqrXs.

This linear condition cuts out a codimension-one subspace of the space of self-dual two-forms. Putting
these linear conditions together for a basis of the space of cohomology classes of closed self-dual two-forms,
we obtain the theorem.

Perturbing the equations also solves transversality issues. To show that MpX, g, ωq is a manifold, we
apply the implicit function theorem. The moduli space MpX, g, ωq can be recast as the zero set of the first-
order differential operator

Fω : pA,ϕq ÞÑ p
1

2
F`A ´ ρ

´1ppϕb ϕ˚q0q ´ ω,D
`
Aϕq.

The implicit function theorem requires that the linearization DFω is surjective and Fredholm at any
solution. Although it is Fredholm, it is not a priori true that it is surjective. However, it is surjective for an
open, dense subset of perturbations. In this case, we say the moduli space is regular.
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It is now a simple calculation with the Atiyah-Singer index theorem to deduce the following theorem
about the Seiberg-Witten moduli space.

Theorem 1.2.4. If there are no reducible solutions and the moduli space is regular, then MpX, g, ωq is a compact,
finite-dimensional manifold of dimension

d “ pc1pdetpS`qq2 ´ 2χpXq ´ 3σpXqq{4

where c1 denotes the first Chern class, χ denotes the Euler characteristic, and σ denotes the signature of the intersection
form.

The manifold MpX, g, ωq can also be oriented in a natural way given a homology orientation on X . The
theorem below is discussed and proved quite explicitly in [Sal99].

Theorem 1.2.5. Suppose the manifold X is equipped with a homology orientation, a selection of a line in

ΛmaxH1pX;Rq b ΛmaxH`2 pX;Rq

where H`2 pX;Rq Ă H2pX;Rq is a maximal positive-definite subspace for the intersection form.
Then the manifold MpX, g, ωq in the ambient space B˚pXq has a natural orientation and accompanying funda-

mental class rMpX, g, ωqs Ă HdpB˚pXqq.

The S1-action of the group of gauge transforamtions on the spinorial part of a configuration gives rise
to a natural principal S1-bundle

P Ñ B˚pXq.

This principal bundle has a Chern class u “ c1pP q P H
2pB˚pXqq.

Definition 1.2.6. Suppose d is even. The Seiberg-Witten invariant SWpX, g, ωq is the pairing

xud{2, rMpX, g, ωqsy P Z.

If d is not even, then set SWpX, g, ωq “ 0.

Note that if d “ 0, then the Seiberg-Witten invariant is simply a signed count of solutions to the Seiberg-
Witten equations.

Furthermore, although we have suppressed it here, the Seiberg-Witten invariant certainly depends on
the choice of spinc structure. We would also like to know whether the Seiberg-Witten invariant is indepen-
dent of the choice of metric and perturbation.

Definition 1.2.7. The pair pg, ωq of a metric and self-dual perturbation is called regular if the moduli space
MpX, g, ωq is regular and contains no reducibles.

Let pg0, ω0q and pg1, ω1q be two regular pairs. The space of Riemannian metrics is contractible, so there
exists a path of pairs pgt, ωtqtPr0,1s between them.

If b`2 pXq ě 1, then we are assured that a generic pair pg, ωq is regular. However, if b`2 pXq ě 2, then a
generic path pgt, ωtqwill satisfy the following property.

Define the parameterized moduli space by

PMpX, gt, ωtq “ YtPr0,1sMpX, gt, ωtq.

11



We may view PMpX, gt, ωtq as the zero set of the parameterized Seiberg-Witten operator:

PF : pA,ϕ, tq ÞÑ p
1

2
pFAq

`t ´ ρtppϕb ϕ
˚q0q ´ ωt, D

`
Aϕq

where the symbols “`t” and ρt reflect the dependence of the self-dual projection and Clifford multiplication
on the metric gt. Then, for a generic choice of path pgt, ωtq, it follows that the parameterized moduli space
is a compact manifold itself, and furthermore a cobordism from MpX, g0, ω0q to MpX, g1, ω1q. The following
theorem is now immediate.

Theorem 1.2.8. If b`2 pXq ě 2, then the Seiberg-Witten invariants of X are independent of the choice of metric and
perturbation.

In the case where b`2 pXq “ 1, the space of pairs pg, ωq admitting reducible solutions have “codimension
one” in the sense of Theorem 1.2.3 within the space of all pairs. The effect of this is the division of the space
of pairs into “chambers”, where the Seiberg-Witten invariants are the same within one chamber but can
change when crossing from one chamber to another. These changes are quantified by the “wall-crossing
formula”, published independently by [LL95] and [OT96].

1.3 The Seiberg-Witten invariants of manifolds satisfying (A1)

This section will conclude our preliminary discussion. We specialize our discussion of the previous section
to a manifold X satisfying (A1), that is, an integral homology S1 ˆ S3.

First, assumption (A1) allows us to describe our perturbation forms in a manner that will prove to be
useful later.

Lemma 1.3.1. ([MRS11], Lemma 2.1) For any self-dual two-form ω P Ω2
`pXq, there is a unique one-form β P Ω1pXq

such that d`β “ ω, d˚β “ 0, and β K H1pXq whereH1pXq denotes the space of harmonic 1-forms.

Proof. By assumption (A1), H2pXq “ 0. Therefore, the Hodge decomposition implies that ω “ dα` d˚γ.
Write β “ ˚γ, so this expression simplifies to ω “ dα`˚dβ. Then since ω “ ˚ω, we also have the equality

ω “ ˚dα` dβ. By the uniqueness of the Hodge decomposition, α “ β and therefore ω “ d`β.
The map d` vanishes on im d, so we can projection β onto pim dqK “ ker d˚. Following this, we can

project β onto the space of co-exact 1-forms so that it lies in the orthogonal complement ofH1pXq.

All of the following notation will be altered to reflect the consequence of this lemma.
Recall (see Theorem 5.8 of [Sal99]) that spinc structures on X are in one-to-one correspondence with

integral lifts of the second Stiefel-Whitney class w2pXq P H
2pX;Z{2q. Since b2pXq “ 0, such a lift is unique

and X has a unique spinc structure. Therefore, all discussion can be made independently of the choice of
spinc structure.

The fact that b2pXq “ 0, however, means that we cannot be assured that MpX, g, ωq contains no re-
ducibles for a generic choice of pg, ωq.

Geometrically, the reducible solutions are singularities of the space MpX, g, ωq and its ambient space
BpXq. Taking inspiration from algebraic geometry, one way to get rid of these singularities is to perform a
blow-up at the singular locus. Indeed, this is the approach taken by [KM07] to properly construct Seiberg-
Witten-Floer homology.
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The blown-up configuration space CσpXq is the (Hilbert completion of the) space of tuples pA, s, ϕq where
A is a unitary connection on the determinant spinor line bundle, s is a nonnegative real number, and ϕ P

C8pS`q is a positive spinor such that ||ϕ||L2 “ 1. Tuples with s “ 0 are called reducible.
Note that while CpXq is a Hilbert space, the space CσpXq is a Hilbert manifold with boundary. The bound-

ary is the locus ts “ 0u.
The group of gauge transformations G acts on CσpXq by

upA, s, ϕq “ pA´ 2u´1du, s, uϕq.

The quotient space CσpXq{G is denoted by BσpXq. The moduli spaceMpX, g, βq Ă BσpXq is the space
of tuples satisfying the (perturbed) blown-up Seiberg-Witten equations:

1

2
F`A “ s2ρ´1ppϕb ϕ˚q0q ` d

`β,

D`Aϕ “ 0.

Here β is a 1-form in the space ker d˚ X pH1pXqqK introduced in Lemma 1.3.1.
The blown-up spaces come equipped with a projection called the “blow-down” map. This map is real-

ized as

π : CσpXq Ñ CpXq

pA, s, ϕq ÞÑ pA, sϕq

in the case of configuration space and induces identical maps π : BσpXq Ñ BpXq and MpX, g, βq Ñ
MpX, g, βq. The map is a diffeomorphism outside of the reducible locus.

The following result about the moduli space holds when X satisfies (A1).

Theorem 1.3.2. For a generic choice of pair pg, βq, the moduli spaceMpX, g, βq is a closed, oriented zero-dimensional
manifold.

Proof. The proof will proceed in a couple of steps, and amounts to using the implicit function theorem twice
in the proper setting. It follows the line of argument in Lemma 27.1.1 of [KM07].

Let rBσpXq be the double of BσpXq. This can be explicitly described as the space of gauge-equivalence
classes of tuples pA, s, ϕqwith ϕ having unit length, but the restriction s ě 0 removed.

The space rBσpXq is a smooth Banach manifold without boundary, and BσpXq can be identified with its
quotient under the involution pA, s, ϕq ÞÑ pA,´s, ϕq.

Let rZ Ă rBσpXq be the space of tuples satisfying D`Apϕq “ 0.
First, we will show this is a Hilbert submanifold of rBσpXq. By the implicit function theorem, it suffices

to show that the linearized operator

Q : pb, ψq ÞÑ ρpbqϕ`D`Aψ

on the tangent bundle of the double rCσpXq of configuration space is surjective. The domain ofQ is the space
of tuples pb, ψq where b is an imaginary-valued one-form and ψ is a positive spinor in the real-orthogonal
complement of ϕ.

13



Suppose some negative spinor η is orthogonal in L2 to the image of Q. This implies xD´Aη, ψyL2 “

xη,D`AψyL2 “ 0 for any ψ in the real-orthogonal complement of ϕ. The identity xD´Aη, ϕyL2 “ xη,D`AϕyL2 “

0 holds as well, so we conclude D´Aη “ 0.
By unique continuation for the Dirac operator (see Chapter 7 of [KM07]), if η or ϕ are nonzero then

neither can vanish on an open set in X .
On such a sufficiently small open set there is a one-form b and a non-negative smooth function f that

is supported inside this open set such that ρpbqη “ f ¨ ϕ. This can be constructed explicitly using local
coordinates.

However, xρpbqη, ϕyL2 “ xη, ρpbqϕyL2 “ 0 by our initial orthogonality assumption, so we require η to
vanish on an open set, which in turn implies η “ 0. This tells us that Q has dense image. It is also elliptic
and so has closed range. It follows that Q is surjective as desired and rZ is a Hilbert submanifold.

Then, let ĂMpX, g, βq Ă rZ be the space of tuples satisfying

χpA, s, ϕq “
1

2
F`A ´ s

2ρ´1ppϕb ϕ˚q0q “ d`β

.
The operator χ has Fredholm linearization. Applying the implicit function theorem and the Sard-Smale

theorem ([Sma65]), there is a residual set of perturbations β such that ĂMpX, g, βq “ χ´1pβq is a manifold
with dimension indpχq.

The tangent space to rZ at a tuple pA, s, ϕq is the space of tuples pb, r, ψq where b is an imaginary-valued
one-form, r is a real number, and ψ is a positive spinor satisfying the equations

ρpbqϕ`D`Aψ “ 0

xϕ,ψyL2 “ 0

´d˚b` irsRexiϕ, ψy “ 0.

The last two conditions are the conditions defining the tangent space ofBσpXq (see Chapter 9 of [KM07]).
If we remove zeroth order terms, the index of the linearization of χ χ at a point pA, s, ϕq is equal to the index
of the linear operator

S : pb, r, ψq ÞÑ pD`Aψ, d
`b, d˚bq

on the space of tuples pb, r, ψq satisfying xφ, ψyL2 “ 0.
The index of this operator is the sum of the indices of the Dirac operator and the operator d` ‘ d˚.
By the Atiyah-Singer index theorem [AS68], the (real) index of the spinc Dirac operator D`A is equal to

the quantity
1

4
pc1pS

`q2 ´ σpXqq “ 0.

We can also show the operator d` ‘ d˚ has index zero on X without using the index theorem. First,
suppose b satisfies d`b “ d˚b “ 0.

By the Hodge decomposition, b decomposes into an orthogonal sum β`d˚γ, where β is harmonic. Since
d`b “ 0, the two-form db “ dd˚γ is anti-self-dual. Taking the Hodge star, we find db “ ´˚ db “ ´˚ dd˚γ “
´˚d˚d˚γ “ ´d˚dp˚γq. Therefore, db is both exact and co-exact, which implies it is equal to zero and b “ β.

Therefore, the kernel of d` ‘ d˚ is exactly the harmonic 1-forms, the space of which has dimension
b1pXq.
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The adjoint of d`‘ d˚ is the operator d˚‘ d. The kernel of this operator consists of all pairs pγ, fq of co-
closed self-dual two-forms and closed smooth functions, respectively. There are in bijection with harmonic
self-dual two-forms and harmonic functions by a similar Hodge decomposition argument to above, and it
follows that the kernel has dimension b0pXq ` b`2 pXq in this case.

We conclude that the index of d` ‘ d˚ is b1pXq ´ b0pXq ´ b`2 pXq “ 0.
The restriction of χ to the locus ts “ 0u has index ´1. This follows from the fact that the linearization

of χ vanishes on the normal bundle of the locus ts “ 0u, as the fibers consist of tuples of the form p0, r, 0q.
Therefore, the intersection of ĂMpX, g, βqwith the locus ts “ 0u is empty for generic β.

The proofs of compactness and orientability of the moduli space ĂMpX, g, βq are quite similar to the
regular setting and will be omitted.

We conclude the proof by identifying MpX, g, βq with the subset of ĂMpX, g, βq with nonnegative s-
coordinate, and its boundary with the intersection ĂMpX, g, βq X ts “ 0u.

Note that this theorem requires working in the blown-up setting, as we can only apply the implicit
function theorem to a function mapping out of a smooth manifold.

As before, we will call a pair pg, βq regular ifMpX, g, βq is a closed manifold. The result above implies
that there is a residual set of regular pairs.

However, since b`2 pXq “ 0, it is not possible in general to choose a generic path pgt, βtq such that the
parameterized moduli space PMpX, gt, βtq does not have any singularities. The best that we can do is the
following result.

Theorem 1.3.3. Let pgt, βtqtPr0,1s be a path of pairs such that the endpoints pg0, β0q and pg1, β1q are both regular.
The manifold

PMpX, gt, βtq “ YtPr0,1sMpX, gt, βtq

is a compact, oriented one-dimensional manifold with boundary equal to the disjoint union

MpX, g0, β0q \MpX, g1, β1q \M0

whereM0 is the zero-dimensional manifold consisting of gauge-equivalence classes of reducible solutions.

Proof. The proof is analogous to the previous theorem. One applies instead the implicit function theorem
to parameterized versions of the operators in the proof of that theorem.

Figure 1.3: The parameterized moduli spaceMpX, gt, βtqwith boundary components labelled.
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Letting # denote the oriented count of points again, we find an expression for the difference in the
Seiberg-Witten invariants associated to pg0, β0q and pg1, β1q:

#MpX, g1, β1q ´#MpX, g0, β0q “ #M0.

As we have seen, the Seiberg-Witten invariants are not as well-behaved as we would like in the case
where b`2 pXq “ 0. However, the assumption (A1) makes the situation somewhat easier to deal with by
making all of the moduli spaces zero-dimensional and providing us with a generic set of regular pairs.

The strategy going forward will be to add a “correction term” to the Seiberg-Witten invariants that will
make them independent of the choice of metric and perturbation. This correction term is in part the index
of a Dirac operator on the manifold Z` introduced in Section 1.1. The explicit definition of the correction
term and the proof of the metric and perturbation independence of the corrected Seiberg-Witten invariant
will be the subject of the next chapter.
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Chapter 2

The Lambda Invariant

In this chapter, we present the construction of the modified Seiberg-Witten invariant λSW pXq for a mani-
fold X satisfying assumption (A1). The invariant λSW pXq is independent of the metric and perturbation
chosen on X , and its construction and proof of independence was first carried out in the paper [MRS11] by
Mrowka, Ruberman, and Saveliev. All results in this chapter are attributed to their work.

The exposition is largely structured like that of [MRS11], but some of the proofs have been re-written
and extra explanation has been added wherever deemed necessary.

Section 1 begins with an overview of a particular differential operator associated to X known as the
end-periodic Dirac operator. Such operators have associated “Fourier-Laplace” transforms that may be
used to understand their Fredholm theory. We will also define the Fourier-Laplace transform and prove
some theoretical results. Finally, at the end of the section a rigorous definition of the invariant λSW pXq is
given.

The object of interest of the next two sections is the index of the end-periodic Dirac operator. This
operator depends on a choice of a metric and perturbation pair as well, and Section 2 applies the theory of
the previous section to prove a preliminary formula regarding the change of index between different pairs
of metric and perturbation. This culminates in the work of Section 3, which relates the change of index
of the end-periodic Dirac operator between two regular pairs to the spectral flow of their Fourier-Laplace
transforms. In Section 4, a correspondence between the oriented count of reducible solutions along a path
of pairs pgt, βtq is equated with the spectral flow of Section 3, which proves the invariance of λSW pXq under
metric and perturbation pairs.

2.1 The end-periodic Dirac operator and its Fredholm theory

Let X be a closed, oriented 4-manifold satisfying assumptions (A1) equipped with a Riemannian metric
g and a homology orientation. Let Y be an embedded compact 3-manifold representing the generator of
H3pX;Zq determined by the homology orientation.

Since H2pX;Zq “ 0, in addition to a spinc structure X also admits some spin structure s. Furthermore,
the spinor bundles S˘ Ñ X associated to this spin bundle are the same as the spinor bundles for the spinc

structure s.
Recall our construction of the following associated manifolds in Section 1.1:

• W , the homology cobordism from Y to Y constructed by cutting open X along Y .
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• rX , the infinite cyclic cover of X equal to a Z-fold end-to-end gluing of copies of W .

• X`, the “positive end” of rX .

• Z`, the gluing of a compact spinc 4-manifold Z bounding Y to X`.

These constructions were done in Section 1.1 in the case where Y was a homology 3-sphere, but they
are well-defined even when Y is any compact 3-manifold. Note that W is also still a homology cobordism
from Y to itself, which is clear from modification of the proof of Theorem 1.1.1.

The spin structure naturally pulls back to the infinite cyclic cover rX . The spinor bundles are the pull-
backs of the spinor bundles over X along the projection π : rX Ñ X .

The spin structure and spinor bundles can then be defined on X` by restriction. Finally, to define a spin
structure on Z` we must pick an extension of the spin structure to the manifold Z. The spinor bundles on
the manifolds rX , X`, and Z` will be all be denoted by S˘ as well, but the base manifold will always be
clear in any use of this notation.

The same process works to extend geometric data such the metric g or a perturbation one-form β to
these three noncompact manifolds.

To give some context to the section title, the manifold Z` is an example of an end-periodic manifold with
end modeled on rX . These objects were first introduced in the 1987 paper of Taubes [Tau87]. In this paper,
Taubes constructed the Donaldson invariants for end-periodic 4-manifolds and used them to prove the ex-
istence of a continuum of R4 with exotic smooth structure. The Fredholm theory for end-periodic operators
that was developed in the course of doing so serves as a foundation for all of the analysis that we will
describe here.

Given the induced spin structure on Z`, there is a spin Dirac operator

D`pZ`q : L2
1pZ`;S`q Ñ L2pZ`;S´q.

Given some 1-form β, we can also consider the perturbed Dirac operator

D`pZ`, βq “ D`pZ`q ` ρpβq : L2
1pZ`;S`q Ñ L2pZ`;S´q.

Recall the infinite cyclic cover rX Ñ X comes equipped with a covering transformation T . Concretely,
T is the map that sends a point x P Wi to its corresponding point in Wi`1. This transformation is also
well-defined on the periodic end X` Ă Z`.

The Dirac operator on Z` commutes with this translation on the end. For any spinor ϕ, there is a
pointwise equality find D`pϕ ˝T q “ D`pϕq ˝T on the end X`. Therefore, the Dirac operator is an example
of an end-periodic operator in the sense of [Tau87].

It is not a priori clear that this end-periodic Dirac operator is Fredholm, and indeed it is not always true
that it is.

Before we discuss this Fredholm theory, however, it is necessary to widen our consideration to a whole
class of weighted Sobolev spaces on the manifolds rX and Z`.

Let E Ñ X be an abstract vector bundle and rE Ñ rX its pullback to the infinite cyclic cover. Let rE Ñ Z`

be some vector bundle constructed by extending the restriction rE|X` over Z`.
Pick a smooth map f : X Ñ S1. We will suppose that the closed one-form f˚pdθq represents the

generator of H1pX;Zq fixed by the homology orientation.s
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The map f has a natural lift rf : rX Ñ R such that rfpT pxqq “ rf ` 1. Fixing a weight δ P R, restrict rf to
X` and pick an extension h of δ ¨ rf to Z`.

Definition 2.1.1. For any fixed weight δ P R, the Hilbert space of sections L2
k,δpZ`; rEq is the space of all

sections ϕ such that ehϕ P L2
kpZ`; rEq. More compactly,

L2
k,δpZ`; rEq “ e´δhL2

kpZ`; rEq.

We can define similar spaces on the cyclic cover using two weights δ1, δ2 P R. In this setting, we pick a
smooth function δ : rX Ñ R such that δpxq “ δ1 for x PWi for i ď ´1, and δpxq “ δ2 for x PWi for i ě 1.

Definition 2.1.2. The space L2
k,δ1,δ2

p rX; rEq is given by

L2
k,δ1,δ2p

rX; rEq “ e´δ
rfL2
kp

rX; rEq.

If δ1 “ δ2 “ δ for some δ P R, the weighting function is the constant function to δ and we denote the
resulting weighted Sobolev space by L2

k,δp
rX; rEq.

Note that when δ “ 0 or δ1 “ δ2 “ 0, we have

L2
k,δpZ`; rEq » L2

kpZ`; rEq

and
L2
k,δ1,δ2p

rX; rEq » L2
kp

rX; rEq

respectively.
It is immediate that the (perturbed) Dirac operator defines a differential operator

D`pZ`, βq : L2
k,δpZ`; rEq Ñ L2

k´1,δpZ`; rEq

as well.

2.1.1 The Fourier-Laplace transform and Taubes’ theorem

The Fredholm properties of the Dirac operator are tied to a family of operators known as its Fourier-Laplace
transform, introduced by Taubes in [Tau87].

Now take a pair of abstract bundles E Ñ X and rE Ñ rX , we observe that E can be identified with the
quotient of rE by the action of pullback by the covering transformation T . Therefore, the sections of E are
in correspondence with translation-invariant sections of rE.

The Fourier-Laplace transform is an operation that takes a section of rE and transforms it to a family of
translation-invariant sections of rE, and therefore a family of sections of E. Fix weights δ1, δ2 P R and let
rf, δ : rX Ñ R be functions defined as in the previous subsection.

Definition 2.1.3. Fix µ P C. For any section ϕ P L2
k,δ1,δ2

pX; rEq, its Fourier-Laplace transform is defined to be
the sum

ϕ̂µ “ eµ
rf

8
ÿ

n“´8

eµnpϕ ˝ Tnq.
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We have

ϕ̂µpTxq “ eµ
rfpTxq

8
ÿ

n“´8

eµnpϕ ˝ TnqpTxq

“ eµp
rfpxq`1q

8
ÿ

n“´8

eµnpϕ ˝ Tn`1qpxq

“ eµ
rfpxq

8
ÿ

n“´8

eµpn`1qpϕ ˝ Tn`1qpxq

“ ϕ̂µpxq

so the Fourier-Laplace transform is indeed translation-invariant and defines a section of E whenever the
sum in the definition is well-defined. Note by definition, whenever the Fourier-Laplace transform is well-
defined, the family of sections tϕ̂µu is holomorphic in the variable µ.

We can characterize when the sum is well-defined quite easily.

Lemma 2.1.4. Let ϕ P L2
k,δ1,δ2

p rX; rEq be a section that is supported on X`. Then the family tϕ̂µu is holomorphic for
all µ satisfying Repµq ă δ2.

Proof. It suffices to uniformly bound |ϕ̂µpxq|2L2 for any x P W0. Note that since ϕ is supported in X`,
pϕ ˝ Tnqpxq “ 0 for any n ă 0.

By the triangle inequality and the Cauchy-Schwarz inequality, we can write

|ϕ̂µ|
2
L2 ď

8
ÿ

n“´8

|eµp
rf`nqpϕ ˝ Tnqpxq|2L2

“
ÿ

ně0

|eµp
rf`nqpϕ ˝ Tnqpxq|L2

“
ÿ

ně0

|epµ´δ2qp
rf`nqpeδ2p rf ` nqpϕ ˝ Tnpxqqq|2L2

ď p
ÿ

n“ě0

|epµ´δ2qp
rf`nq|q2p

ÿ

ně0

||eδ2
rf pϕ ˝ Tnqpxq||2L2q.

The second term in the product is bounded by ||eδ2 rfϕ||2L2 , which is in turn bounded sinceϕ P L2
k,δ1,δ2

p rX; rEq.
The first term is bounded if and only if Repµq ă δ2.

The same argument works for a section supported in the other end of rX . By applying a cutoff function,
we arrive at the following corollary.

Corollary 2.1.5. For any section ϕ P L2
k,δ1,δ2

p rX; rEq, the family tϕ̂µu is holomorphic for all µ satisfying δ1 ă
Repµq ă δ2.

As is the case with its namesake, the Fourier-Laplace transform is invertible. Furthermore, the data of
the entire family ϕ̂µ is not required. Instead, we only need to know the sections ϕ̂µ for µ in an interval
Ipνq “ tν ` 2πiα |α P r0, 1su. Given this, the inverse Fourier-Laplace transform is defined by

ϕ “
1

2πi

ż

Ipνq

e´µ
rf ϕ̂µ dµ

The proof that this is an honest inverse is a bit of elementary complex analysis.
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In addition to Fourier-Laplace transforms of sections, we can also consider Fourier-Laplace transforms
of differential operators. Let E and F be two bundles over X and rE, rF their respective pullbacks over rX .
Let D : L2

1,δp
rX; rEq Ñ L2

δp
rX; rF q be a first-order differential operator.

Then, we can define a holomorphic family of differential operators

D̂µ : L2
1pX;Eq Ñ L2pX;F q

by requiring that the following diagram commute:

L2
1,δp

rX; rEq L2
δp

rX; rF q

L2
1pX;Eq L2pX;F q

D

pµ pµ

D̂µ

The vertical arrows denote the Fourier-Laplace transform at µ.
The Fredholm-ness of D was shown by Taubes to rely quite explicitly on the family tD̂µu.

Lemma 2.1.6. ([Tau87], Lemma 4.3) The operator D is Fredholm if and only if the operators D̂µ are invertible for all
µ with Repµq “ δ.

We can apply this lemma to the situation of the end-periodic Dirac operator D`p rX, g, βq. First, we
calculate the Fourier-Laplace transform.

Lemma 2.1.7. The Fourier-Laplace transform of D`p rX, g, βq at µ P C is the operator

D`µ pX, g, βq “ D`pX, g, βq ´ µ ¨ ρpf˚pdθqq

where dθ is the generator of H1pS1;Zq corresponding to its standard orientation.

Proof. Set D “ D`p rX, g, βq.
For any spinor ϕ P L2

1p
rX;S`q, note that Dpeµ rfϕq “ eµ

rf pµ ¨ ρpd rfqϕ`Dϕq.
To conclude the lemma, we must show that the operators D`µ pX, g, βq satisfy the identity

D`µ pX, g, βqϕ̂µ “
yDϕµ.

To calculate the left-hand side, we identify ϕ̂µ with a translation-invariant section of S`. Then, by def-
inition of the end-periodic Dirac operator, the section D`pX, g, βqϕ̂µ of S` and the translation-invariant
section Dϕ̂µ are identified. Under this identification, it is also the case that ρpf˚pdθqq and ρpd rfq are identi-
fied.

Therefore, we may identify the left-hand side with

pD ´ µ ¨ ρpd rfqqϕ̂µ “
ÿ

nPZ
pD ´ µ ¨ ρpd rfqqpeµp

rf`nqpϕ ˝ Tnqq

“
ÿ

nPZ
eµp

rf`nqDpϕ ˝ Tnq

“
ÿ

nPZ
eµp

rf`nqpDϕ ˝ Tnq

“yDϕµ.
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The second equality uses our commutation formula for the Dirac operator established earlier, while the
third equality uses the fact that the Dirac operator commutes with translation.

The proof here extends immediately to the case of any first-order differential operatorD between vector
bundles E and F over X . Denote by rE and rF the respective pullbacks of E and F by the covering map
from rX to X . The operator D induces an end-periodic operator rD from rE to rF , which has an associatd
family of Fourier-Laplace transforms tD̂µu. Letting σpD,´q be the symbol of the operator, we obtain

D̂µ “ D ´ µ ¨ σpD, d rfq.

Finally, we are in a position to prove our first major result about the Fredholm theory of the end-periodic
Dirac operator.

Theorem 2.1.8. Let pg, βq be a regular pair. Then the Dirac operator

D`p rX, g, βq : L2
1,δp

rX;S`q Ñ L2
δp

rX;S´q

is Fredholm for any δ P R.

Proof. Suppose first that δ “ 0.
By Lemma 2.1.6 and Lemma 2.1.7, the operator is Fredholm if and only if the family of operators

D̂µ “ D`pX, g, βq ´ µ ¨ ρpf˚pdθqq

are invertible for all µ such that Repµq “ 0.
Taking the canonical spin connection as a base, the one-forms β ´ µ ¨ f˚pdθq are identified with a family

of spinc connections Aµ whose corresponding Dirac operators satisfy

D`Aµ “ D̂µ.

Furthermore, we have F`Aµ “ d`β for any µ since the form f˚pdθq is closed.
If pg, βq is a regular pair, then the operators D`Aµ must be invertible. If D`Aµ is not invertible for some µ

with Repµq “ 0, then there is a spinor ϕ of L2 norm 1 in its kernel.
Therefore, the tuple pAµ, 0, ϕq forms a reducible solution to the blown-up Seiberg-Witten equations per-

turbed by β. We have assumed that there are no reducible solutions, so we arrive at a contradiction and all
of the operators are invertible.

To extend to the case of arbitrary δ P R, define our connections Aµ as before.
Suppose ϕ P L2

1,δp
rX;S`q has unit L2 norm and is in the kernel of D`Aµ for some µ with Repµq “ δ. Then

recall that eδ rfϕ P L2
1p

rX;S`q and also has unit L2 norm.
By our commutation formula for the Dirac operator, the equation D`Aµpϕq “ 0 is equivalent to the

identity D`Aµ´δpe
δ rfϕq “ 0.

Therefore, the tuple pAµ´δ, 0, eδ
rfϕq is a reducible solution and we again arrive at a contradiction.

As we can see from this proof, the Fourier-Laplace transform connects reducible solutions of the blown-
up Seiberg-Witten equations to the Fredholm theory of the end-periodic Dirac operator. This serves as a
rough motivation for the definition of the correction term in λSW pXq, and further analysis will show that
this definition is indeed the correct choice.
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The theoretical results can also be transported directly to the case of an end-periodic Dirac operator

D`pZ`, g, βq : L2
1,δpZ`;S`q Ñ L2

δpZ`;S´q.

This is a direct consequence of Lemma 4.1 in [Tau87].

Lemma 2.1.9. The Dirac operatorD`pZ`, g, βq is Fredholm if and only if the corresponding Dirac operatorD`p rX, g, βq
is Fredholm.

Note that the construction of the Dirac operator and the weighted Sobolev spaces on Z` involve the
additional choices of extensions of the function rf , the metric g, the perturbation one-form β and the spin
structure to Z`. However, the index is invariant under these choices, a result that is proved in Section 2.2.1
using the excision principle.

2.1.2 The correction term

Now we introduce the correction term and the full, rigorous definition of the invariant λSW pXq.

Definition 2.1.10. A path of metrics pgt, βtq for t P r0, 1s is a special path if it has regular endpoints and for
any τ P r0, 1s such that the Seiberg-Witten equations for pgτ , βτ q have reducible solutions then there is some
ε ą 0 such that the metric is constant on pτ ´ ε, τ ` εq, i.e. gτ 1 “ gτ for any τ 1 P pτ ´ ε, τ ` εq.

From now on, any path of metrics pgt, βtq between regular pairs pg0, β0q and pg1, β1q that we discuss
will be assumed to be special. Most of the subsequent will not require that path be special, but rather
that it has regular endpoints. However, it is a useful assumption for simplifying the local structure of the
parameterized moduli space. The justification for the ability to fix a special path comes from Appendix A
of [MRS11], which proves the following theorem:

Theorem 2.1.11. Any path of metrics pgt, βtq with regular endpoints admits an endpoint-preserving homotopy to a
special path.

Fix a regular pair pg, βq. Then, for any end-periodic manifold Z` with end modeled on rX , define the
quantity

wpX, g, βq “ indCD
`pZ`, g, βq ´ signpZq{8.

The operatorD`pZ`, g, βq is the usual end-periodic Dirac operator between unweighted Sobolev spaces
of sections. The signature term is added to make wpX, g, βq independent of the choice of Z`. This indepen-
dence will also be shown later using the excision principle.

Then, define for any regular pair pg, βq the rational invariant

λSW pXq “ #MpX, g, βq ´ wpX, g, βq.

The objective, as stated before, is to prove the following main theorem.

Theorem 2.1.12. λSW pXq is invariant of the choice of regular pair pg, βq used in its definition.

2.1.3 The Fourier-Laplace transform along a path

Let pgt, βtq for t P r0, 1s be a special path.
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By Theorem 1.3.3, calculating the change in Seiberg-Witten invariants from pg0, β0q to pg1, β1q is equiva-
lent to a signed count of the reducible solutions to the blown-up Seiberg-Witten equations across all pairs
pgt, βtq in the path.

The appearance of a reducible solution in turn corresponds to some Fourier-Laplace transform D̂µpX, gt, βtq

ceasing to be invertible, and this is the device through which we may count reducible solutions.

Definition 2.1.13. For any pair pg, βq, its spectral set Σpg, βq Ă C is the set of µ P C such that D̂`µ pX, g, βq is
not invertible.

There is an possibility that the spectral set Σpg, βq may depend on the function f : X Ñ S1, but this is
not the case.

Lemma 2.1.14. The spectral set Σpg, βq is independent of the choice of function f : X Ñ S1.

Proof. Any two choices f, f 1 : X Ñ S1 satisfy the property that the pullbacks f˚pdθq and pf 1q˚pdθq represent
the same element in H1pX;Zq. Therefore, the difference pf 1q˚pdθq ´ f˚pdθq is an exact form dh, and the
corresponding Dirac operators differ by µ ¨ ρpdhq.

Let D̂`µ pX, g, βq be the Dirac operator for the function f . Then by our commutation identity,

pD̂`µ pX, g, βq ´ µ ¨ ρpdhqqϕ “ eµhD̂`µ pX, g, βqe
´µhϕ

for any spinor ϕ, and the statement of the lemma is immediate.

Using some technical results from functional analysis, we can achieve a better understanding of the
spectral sets along a special path pgt, βtq for t P r0, 1s.

Lemma 2.1.15. For any fixed time τ , there exists some µ0 P C such that D̂`µ0
pX, gτ , βτ q is invertible.

Proof. Since pgt, βtq is a special path, the space of reducible solutionsM0 associated to this path consists of
finitely many points, so there will be a finite number of reducible solutions inMpX, gτ , βτ q for any τ P r0, 1s.

Suppose there is some unit-length spinor ϕ and µ P iR such that ϕ is in the kernel of D̂`µ pX, gτ , βτ q. Let
A denote the connection associated to the imaginary-valued one-form β ` µ ¨ f˚pdθq.

Then, just like in the proof of 2.1.8, one finds that pA, 0, ϕq is a reducible solution for the pair pgτ , βτ q.
Considering this over all µ P iR, it follows that there can only be finitely many µ such that D̂`µ pX, gτ , βτ q
has a nonzero kernel. Otherwise, there would be infinitely many reducible solutions for the pair pgτ , βτ q,
which contradicts the finiteness ofM0.

Since all of these operators are of index zero, this is sufficient to prove the lemma.

This lemma, combined with the standard spectral theory of compact operators, yields the following
result on the spectral set at any fixed time τ .

Lemma 2.1.16. For any t P r0, 1s, the spectral set Σpgt, βtq is a discrete subset of C, and the inverse of D̂`µ pX, gt, βtq
is a meromorphic function of µ.

Proof. As in the previous lemma, we write the family D̂`µ pX, gt, βtq as T `µA, where T “ D`pX, gt, βtq and
A “ ´ρpf˚pdθqq.

We know that T ` µ0A is invertible for some µ0 P C.
Therefore, the operator T ` µA is invertible if and only if

pT ` µAqpT ` µ0Aq
´1 “ 1` pµ´ µ0qApT ` µ0Aq

´1
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is invertible.
By definition, this is true if and only if ´pµ´ µ0q

´1 is in the spectrum of the operator ApT ` µ0Aq
´1.

Since A is compact and pT ` µ0Aq
´1 is bounded, the operator K “ ApT ` µ0Aq

´1 is compact.
Now we can apply the spectral theory of compact operators.
By Theorem 6.26 of Chapter III of [Kat66], the spectrum of K is countable and can only accumulate at

zero. We have shown that Σpgt, βtq is in bijection with the spectrum of K via the map µ ÞÑ ´pµ ´ µ0q
´1,

which is sufficient to show that it is discrete.
From the discussion in Section 5 of Chapter III in [Kat66], we also have that the resolvent Rpλq “

pK ´ λIq´1 is meromorphic in λ away from the accumulation point λ “ 0, which shows that pT ` µAq´1 is
meromorphic in µ.

This lemma, combined with Lemma 2.1.6, gives an alternate proof of Theorem 3.1 of [Tau87] in the case
of the Dirac operator.

Corollary 2.1.17. The end-periodic operator

D`pZ`, g, βq : L2
1,δpZ`;S`q Ñ L2

δpZ`;S´q

is Fredholm for all δ P R outside of some discrete subset with no accumulation point.

Next, we can examine the parameterized spectral set

ΣP pgt, βtq “ YtPr0,1sΣpgt, βtq Ă C.

The following theorem will make use of another technical result from [Kat66], which requires the fol-
lowing setup.

Let τ P r0, 1s be such that the corresponding spectral set Σpgτ , βτ q is nonempty. Then, for any η P

Σpgτ , βτ q, we can pick a small circle L around it that does not contain any other element of the spectral set.
Then, the following operator is well-defined:

Pη “

ż

L

pD̂µpX, gτ , βτ qq
´1dµ.

Now, we can state our theorem.

Theorem 2.1.18. Let pgt, βtq be a path with regular endpoints as above and suppose there is a time τ P r0, 1s and a
point η P Σpgτ , βτ q such that the rank of the operator Pη is one. Then, there is an open neighborhood U of η and some
real ε ą 0 such that the intersection

ď

|τ´s|ăε

Σpgs, βsq X U

is an embedded curve in the complex plane.

Proof. As before, set T “ D`pX, gτ , βτ q and A “ ρpf˚pdθqq. Pick µ0 P C such that T `µ0A is invertible, and
define the compact operator K “ ApT ` µ0Aq

´1.
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Write

Pη “

ż

L

pD̂µpX, gτ , βτ qq
´1dµ

“

ż

L

pT ` µAq´1dµ

“

ż

L

pT ` µ0Aq
´1p1` pµ´ µ0qKq

´1dµ

“ pT ` µ0Aq
´1

ż

L

p1` pµ´ µ0qKq
´1dµ.

Changing variables to ζ “ ´pµ´ µ0q
´1, one finds

ż

L

p1` pµ´ µ0qKq
´1dµ “

ż

L1
ζ´1pK ´ ζq´1dζ

for L1 a small loop around ξ “ ´pη ´ µ0q
´1.

It follows that Pη “ 2πipT ` µ0Aq
´1ξ´1Πξ by elementary complex analysis. It follows that Πξ has rank

one as well.
Applying the local description of the spectral set around τ from Theeorem 1.8 of Chapter VII of [Kat66],

the theorem follows.

2.2 The first change of index formula: excision and residue calculus

Suppose δ P R is chosen such that the end-periodic operatorD`pZ`, g, βq is Fredholm on the corresponding
weighted Sobolev spaces. We write indδD

`pZ`, g, βq for its index.
In this section, we derive a formula comparing the indices indδD

`pZ`, g, βq for different values of
δ P R. The excision principle for the index allows us to reduce the problem to computing the index of a
Dirac operator on the infinite cyclic cover. We then use the Fourier-Laplace transform to derive an explicit
formula for this index.

2.2.1 The excision principle

Let A1, B1, A2, B2 be oriented 4-manifolds with boundary. We have BA1 “ BA2 “ Y and BB1 “ BB2 “ Y

where Y is a compact oriented 3-manifold. Suppose there are Fredholm operators

D1 : L2
1pA1 YY B1q Ñ L2pA1 YY B1q

D2 : L2
1pA2 YY B2q Ñ L2pA2 YY B2q

such that D1 “ D2 on Y . We can also define operators

D1 : L2
1pA1 YY B2q Ñ L2pA1 YY B2q

D2 : L2
1pA2 YY B1q Ñ L2pA2 YY B2q
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by

D1 “

$

&

%

D1 on A1

D2 on B2

and D2 “

$

&

%

D2 on A2

D1 on B1

.

If D1 and D2 are Fredholm operators, then the four operators D1, D2, D1, D2 have indices related by
the excision principle.

Theorem 2.2.1. Let D1, D2, D1, and D2 be Fredholm operators constructed in the manner above. Then

indpD1q ` indpD2q “ indpD1q ` indpD2q.

The standard excision principle requires the manifolds to be compact, and can be found in Chapter 7 of
[DK90]. However, it was extended by Gromov and Lawson in [GJ83] to the case of non-compact manifolds.

Using the excision principle, we can prove the promised statements about the invariance of the index of
D`pZ`, g, βq and the further invariance of the correction term wpX, g, βq.

Lemma 2.2.2. The index indδD
`pZ`, g, βq is independent of the ways in which the metric, spin structure, pertur-

bation form, and function δ ¨ rf are extended to Z.

Proof. Consider two different such extensions. The data of these extensions are two tuples pg1, s1, β1, h1q

and pg2, s2, β2, h2q of metric, spin structure, perturbation form, and extension of rf respectively.
Let Z` be the orientation reversal of Z`. Then define D1 “ D`pZ`, g1, β1q ´ ρpdh1q on Z` and D2 “

D`pZ`, g2, β2q ` ρpdh2q on Z`. Note that to apply the excision principle exactly as stated above, we are
required to work with operators on unweighted Sobolev spaces.

We will apply the excision principle to these two operators. Set A1, A2, B1, B2 to be Z, X`, X`, and Z

respectively. The manifold X` is the orientation reversal of X`.
By the commutation formula for the Dirac operator, the following diagram commutes:

L2
1pZ`;S`q L2pZ`;S´q

L2
1,δpZ`;S`q L2

δpZ`;S´q

D1

e´h e´h

D`pZ`,g1,β1q

The vertical maps are isometries, so we conclude the operator D1 acting on the unweighted Sobolev
spaces has index indδpD

`pZ`, g1, β1qq.
To calculate the index of D2, observe

D2 “ D`pZ`, g2, β2q ` ρpdh2q

“ D´pZ`, g2, β2q ` ρpdh2q

“ pD`pZ`, g2, β2q ´ ρpdh2qq
˚.

Therefore, indpD2q “ ´ indδpD
`pZ`, g2, β2qq.

The operator D1 is the Dirac operator D` plus some zero-order terms on the closed manifold Z YY Z.
Therefore, it has index zero.

The operator D2 also has index zero. Let ι be the orientation-reversing involution on X` YY X`. Re-
versing the orientation on X` YY X` switches the spinor bundles. Therefore, the pullback of D2 by ι is a

27



differential operator from negative spinors to positive spinors, which is easy to see is the adjoint of D2. It
follows that

indD2 “ ´ indpι˚D2q.

However, the kernel and cokernel of the operators D2 ˝ ι and D2 are identified via the involution as
well, so they both must have index zero.

Lemma 2.2.3. The correction term

wpX, g, βq “ indCD
`pZ`, g, βq ´ signpZq{8

is independent of the choice of manifold Z bounding Y .

Proof. Let Z1, Z2 be two choices of manifolds bounding Y .
We can apply the excision principle again to the Dirac operator for A1, B1, A2, and B2 equal to Z1, X`,

Z2, X`, respectively.
This indicates that the difference indCD

`ppZ1q`, g, βq´ indCD
`ppZ2q

`, g, βq is equal to the index of the
Dirac operator on Z1 YY Z2.

By the application of the Atiyah-Singer index theorem to the Dirac operator, this index is equal to p1{24,
where p1 is the Pontryagin number of Z1 YY Z2.

Applying the Hirzebruch signature theorem, we have the identity

signpZ1q ´ signpZ2q “ signpZ1 YY Z2q “ p1{3.

Rearranging, we conclude

indCD
`ppZ1q`, g, βq ´ signpZ1q{8 “ indCD

`ppZ2q`, g, βq ´ signpZ2q{8

as desired.

2.2.2 Reduction to the infinite cyclic cover

Pick δ1, δ2 P R such that the operator D`pZ`, g, βq is Fredholm when acting on the respective weighted
Sobolev spaces.

It will be useful to us to compute the difference in indices

indδ1 D
`pZ`, g, βq ´ indδ2 D

`pZ`, g, βq.

For the Dirac operatorD`p rX, g, βq on the infinite cyclic cover rX , let indδ1,δ2 D
`p rX, g, βq denote its index

as an operator
D`p rX, g, βq : L2

1,δ1,δ2p
rX;S`q Ñ L2

δ1,δ2p
rX;S´q.

This theorem is the first step in our explicit computation of the change of index.

Theorem 2.2.4. For any δ1, δ2 P R such that the end-periodic Dirac operator is Fredholm on the respective weighted
Sobolev spaces,

indδ2 D
`pZ`, g, βq ´ indδ1 D

`pZ`, g, βq “ indδ1,δ2 D
`p rX, g, βq.
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Proof. Let X´ “ rXzX` be the other end of the cover, equipped with the induced orientation from rX .
Apply the excision principle with A1, B1, A2, B2 equal to Z, X`, Z, X´. Recall the function δ ¨ rf on X`

that defines the weighted Sobolev space with weights δ1, δ2. It is clear that any other such function h on X`
agreeing with δ ¨ rf outside of W0 Ă X` defines the same weighted Sobolev space.

Now let h1 : Z´ Ñ R be the extension of δ1 ¨ rf to Z´, and h2 : Z` Ñ R be the extension of δ2 ¨ rf to Z`.
Set D1 “ D`pZ`, g, βq ´ dh2 and D2 “ D`pZ´, g, βq ´ dh1.
The Dirac operator on the manifold Z YY Z has index zero. If we write Z´ “ Z YY X´, the excision

princple then yields the identity

indδ2 D
`pZ`, g, βq ` indpD`pZ´, g, βq ´ dh1q “ indδ1,δ2 D

`p rX, g, βq.

It remains to show the identity

indδ1 D
`pZ´, g, βq “ ´ indδ1 D

`pZ`, g, βq,

To see this, apply the excision principle again with A1, B1, A2, B2 equal to Z, X`, Z, X´. Pick an
extension h11 : Z` Ñ R of δ1 ¨ rf to Z`.

This time, use the operatorsD1 “ D`pZ`, g, βq´dh
1
1,D2 “ D`pZ´, g, βq´dh1 for the excision principle.

Then, one finds
indδ1 D

`pZ`, g, βq ` indδ1 D
`pZ´, g, βq “ indδ1 D

`p rX, g, βq.

The right-hand side is zero, as will be implied by the index formula proved independently in the next
subsection.

2.2.3 Residue calculus

Now that we have reduced the problem to calculating indδ1,δ2 D
`p rX, g, βq, it remains to explicitly calculuate

the kernel and the cokernel of this operator.
First, pick some element ϕ in the kernel of this operator. Let ξ : rX Ñ R be a smooth function supported

on X` that is equal to 1 on the subset

W1 YY W2 YY ¨ ¨ ¨ Ă X`.

Then write u “ ξ ¨ ϕ, v “ p1´ ξq ¨ ϕ.
We calculate D`p rX, g, βqu “ ρpdξq ¨ ϕ, D`p rX, g, βqv “ ´ρpdξq ¨ ϕ.
Define w “ ρpdξq ¨ ϕ. Applying the Fourier transform to the two equations above, we find

D̂`µ pX, g, βqûµ “ ŵµ

and
D̂`µ pX, g, βqv̂µ “ ´ŵµ.

By Lemma 2.1.4, the Fourier transforms ûµ and v̂µ are only holomorphic in µ for Repµq ď δ1 and Repµq ě
δ2 respectively. If, say, δ2 ě δ1, then we cannot immediately recover ϕ using the inverse Fourier-Laplace
transform.

However, we can analytically continue ûµ and v̂µ to meromorphic functions on the entire plane.
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LetRµ be the inverse of D̂`µ pX, g, βq. By Lemma 2.1.16,Rµ is meromorphic in µ. Furthermore, the spinor
w is supported in W0, so its Fourier-Laplace transform ŵµ is holomorphic for all µ P C. Write

ûµ “ Rµŵµ

and
v̂µ “ ´Rµŵµ.

The right-hand side is a meromorphic function on the entire plane, which yields the desired extension
of ûµ and v̂µ.

Now we can apply the inverse Fourier-Laplace transform to recover ϕ.
Since the Dirac operator is Fredholm, Lemma 2.1.6 shows that the inverse Rµ does not have any poles

on the lines tRepµq “ δ1u or tRepµq “ δ2u. Pick ν1 P C with Repν1q “ δ1, and ν2 “ ν1 ` δ2 ´ δ1 such that
Repν2q “ δ2.

Recall the definition of the intervals Ipνjq: They are equal to tνj ` 2πiα |α P r0, 1su Ă C for j “ 1, 2.
We apply the inverse Fourier-Laplace transform to get the following formula for ϕ:

ϕ “
1

2πi

ż

Ipν1q

e´µ
rfRµŵµ dµ´

1

2πi

ż

Ipν2q

e´µ
rfRµŵµ.

This formula is reminiscent of a contour integral, which can be calculated using the residue theorem.
For any ν P C, define the horizontal interval Hpνq “ tν ` pδ2 ´ δ1qα |α P r0, 1su Ă C.

The four intervals Ipν1q, Ipν2q, Hpν1q, Hpν1 ` 2πiq form a closed rectangle that will be labeled as C. The
two terms in the formula above are represented in the clockwise contour integral around C:

ż

C

e´µ
rfRµŵµ dµ “

ż

Ipν1q

e´µ
rfRµŵµ dµ`

ż

Hpν1`2πiq

e´µ
rfRµŵµ dµ´

ż

Ipν2q

e´µ
rfRµŵµ dµ´

ż

Hpν1q

e´µ
rfRµŵµ dµ.

Note by definition that the Fourier-Laplace transform satisfies ŵµ`2πi “ ŵµ, which further implies
D̂`µ`2πipX, g, βq “ D̂`µ pX, g, βq and Rµ`2πi “ Rµ. Then, it is immediate by a change of variables that

ż

Hpν1`2πiq

e´µ
rfRµŵµ dµ “

ż

Hpν1q

e´µ
rfRµŵµ dµ.

This shows that
ϕ “

1

2πi

ż

C

e´µ
rfRµŵµ dµ.

Let SingC be the set of poles of the function e´µ rfRµŵµ in the interior of the rectangle C. By the residue
theorem, it follows that

ϕ “
ÿ

µPSingC

Respµq.

Before calculating the residues, one may recall that the cokernel of D`p rX, g, βq still needs to be exam-
ined.

This task is avoided entirely by the following trick.
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Recall the diagram

L2
1p

rX;S`q L2p rX;S´q

L2
1,δ1,δ2

p rX;S`q L2
δ1,δ2

p rX;S´q

D`´ρpdhq

e´h e´h

D`

commutes. The vertical arrows are isometries, so this identifies the cokernel of D` with the cokernel of
D` ´ ρpdhq acting on L2.

The operator D`´ρpdhq has formal L2 adjoint D´`ρpdhq, and its cokernel is identified with the kernel
of this operator. The diagram

L2
1p

rX;S´q L2p rX;S`q

L2
1,´δ1,´δ2

p rX;S´q L2
´δ1,´δ2

p rX;S`q

D´`ρpdhq

eh eh

D´

Therefore, the kernel of D´ ` dh is identified with the kernel of the negative Dirac operator acting on
the weighted space L2

1,´δ1,´δ2
.

We can use an identical method to the one detailed for the kernel of D` to compute the kernel of D´,
and therefore the cokernel of D`.

Our residue formula simplifies this even further. From Lemma 2.1.4, if δ2 ď δ1 then the functions ûµ
and v̂µ will be holomorphic inside the rectangle C, so ϕ “ 0 and the kernel of D` vanishes.

On the other hand, if δ1 ď δ2, then we find the cokernel vanishes due to the above trick. Since the only
objective is to calculate the difference in indices

indδ1 D
` ´ indδ2 D

`,

it suffices to assume that δ1 ď δ2.
Let η be a pole of Rµŵµ. Consider the Laurent expansion at η:

Rµŵµ “
8
ÿ

k“´d

ψkpµ´ ηq
k.

Then we can apply the Fourier-Laplace transform D̂`µ pX, g, βq “ D`pX, g, βq ´ µ ¨ ρpf˚pdθqq to this
equation to get

ŵµ “
8
ÿ

k“´d

D̂`µ p
rX, g, βqψkpµ´ ηq

k

“

8
ÿ

k“´d

pD`pX, g, βq ´ µρpf˚pdθqqqψkpµ´ ηq
k

“

8
ÿ

k“´d

pD`pX, g, βq ´ ηρpf˚pdθqqqψkpµ´ ηq
k ´ ρpf˚pdθqqψkpµ´ ηq

k`1

“

8
ÿ

k“´d

pD̂`η pX, g, βqψk ´ ρpf
˚pdθqqψk´1qpµ´ ηq

k
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However, ŵµ is an entire function, so all of its negative-order Laurent series coefficients vanish. This
shows that the spinors ψk satisfy

D̂`η pX, g, βqψk “ ρpf˚pdθqqψk´1

for all ´d` 1 ď k ď ´1 and
D̂`η pX, g, βqψ´d “ 0.

Denote this system of equations by system (S1).
The residue of e´µ rfRµŵµ at η can be calculated explicitly in terms of the coefficients tψku.
The Laurent expansion at η is

e´µ
rfRµŵµ “ p

8
ÿ

j“0

1

j!
p´ rfqje´η

rf pµ´ ηqjqp
8
ÿ

k“´d

ψkpµ´ ηq
kq

“

8
ÿ

p“´d

p
ÿ

j`k“p

ψk
j!
p´ rfqjqe´η

rf pµ´ ηqp.

The residue is the p “ ´1 term, given by

Respηq “ e´η
rf
d´1
ÿ

j“0

ψ´j´1

j!
p´ rfqj .

Let dpηq denote the dimension of the vector space of tuples of sections tψku´1
k“´d satisfying system (S1).

This formula indicates that D̂`η pX, g, βq is invertible if and only if dpηq “ 0. By the Mittag-Leffler theo-
rem, we also find that the kernel of D`p rX, g, βq is determined by the negative Laurent coefficients at each
pole of Rµŵµ. The dimension of the kernel will therefore be the sum of dpηq across all of the poles. More
generally, we can sum up across the entire rectangle C to get

indδ1 D
`pZ`, g, βq ´ indδ2 D

`pZ`, g, βq “
ÿ

ηPC

dpηq.

2.3 The second change of index formula: spectral flow

The formula given at the end of the previous section is rather explicit, but still not directly applicable to the
ultimate purpose of proving Theorem 2.1.12. In particular, the difference

indD`pZ`, g0, β0q ´ indD`pZ`, g1, β1q

remains a mystery.
A re-organization of the previously introduced notation, along with the application of the previously

demonstrated theoretical results regarding the Fourier-Laplace transform, will be used to build onto the
first change of index formula and show that this change of index is equal to a type of spectral flow. This
idea is most famously encountered in the work of Atiyah-Patodi-Singer [APS75] on index theorems for
manifolds with boundary.

As a simple model of spectral flow, let tDtutPr0,1s be a family of self-adjoint operators on Cn. Each
operator Dt has finite spectrum ΣpDtq Ă C, and with some work and some small endpoint-preserving
perturbation of the family tDtu one can find that the union YtPr0,1sΣpDtq is a union of simple embedded
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curves in the complex plane that intersect the positive imaginary axis transversely. The spectral flow of this
family is the oriented intersection number of these curves with the imaginary axis.

An intersection point is counted positively if the respective curve is traveling from the left half plane to
the right half, e.g. the eigenvalue is going from “negative to positive”. It is counted negatively if the curve
is traveling in the other direction.

Figure 2.1: Depiction of spectral flow for two eigenvalues. The top curve goes from right to left and so
contributes negatively to the spectral flow, while the bottom curve contributes positively.

The terminology is used in a slightly different manner in our scenario.
First, we will change the notation from the last section a bit. Recall the formula for the Fourier-Laplace

transform of a spinor:
ϕ̂µ “ eµ

rf
ÿ

nPZ
eµnpϕ ˝ Tnq.

This formula relies not on the value of µ but rather on the value of z “ eµ. Thus, an equivalent definition
of the Fourier-Laplace transform uses a parameter z P C´ t0u, written as

ϕ̂z “ z
rf
ÿ

nPZ
znpϕ ˝ Tnq.

This choice of notation was not made from the beginning because it renders the Fourier-Laplace trans-
form of the Dirac operator less transparent. It is written as

D̂`z pX, g, βq “ D`pX, g, βq ´ log z ¨ ρpf˚pdθqq.

This expression is not a priori well-defined as the complex logarithm is multi-valued. However, any
value of log z is the same modulo addition of an integer multiple of 2πi. It has already been established that
the operators D̂`µ`2πipX, g, βq and D̂`µ pX, g, βq are isomorphic for any µ P C, so the operator D̂`z pX, g, βq is
well-defined.

This change of variables, however, slightly simplifies the residue calculus carried out in the previous
section. In order to calculate the index of the Dirac operator D`p rX, g, βq, we were required to choose a
rectangle C with horizontal edges arbitrarily chosen to avoid any poles of the inverse map Rµ.

Applying the exponential map, we are freed from this arbitrary consideration. The strip tδ1 ă Repµq ă
δ2u is mapped onto the annulus teδ1 ă |z| ă eδ2u, to which we can apply the residue theorem. It is also the
case that dpη` 2πiq “ dpηq for any η P C, so dpηq only depends on the value of eη as well. Therefore, we can
write dpzq for the quantity dplog zq.
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The change of index formula then translates to

indδ1 D
`pZ`, g, βq ´ indδ2 D

`pZ`, g, βq “
ÿ

eδ1ă|z|ăeδ2

dpzq.

Now we define the spectral flow in our situation. Let pg0, β0q and pg1, β1q be regular pairs and pgt, βtq a
special path between them as usual.

Define the cylinder C Ă pC ´ t0uq ˆ r0, 1s to be the set of all pairs pz, tq with |z| “ 1. Within the space
pC ´ t0uq ˆ r0, 1s, we can also define the space S to be the set of tuples pz, tq such that the Dirac operator
D̂`z pX, gt, βtq is not invertible. The space S admits the following description.

Theorem 2.3.1. In a small neighborhood of C, the subset S is a disjoint union of finitely many smooth embedded
curves that intersect C transversely.

In addition, write dtpzq for the quantity dpzq with respect to the metric and perturbation at time t. Then, at any
p “ pz, τq P S X C, the quantity dtpwq at most 1 for any pair pw, tq sufficiently close to p.

Assume for now that this theorem holds. It will be proven later.
It follows from Theorem 2.3.1 that SXC is a finite, discrete set of points. Then, the spectral flow SFpgt, βtq

for the path pgt, βtq is defined to be an oriented count of the intersection S X C. For any such p P S X C,
there is a small neighborhood p P U Ă pC ´ t0uq ˆ r0, 1s such that S X U is a smooth embedded curve γ.
Then, p is counted with sign `1 if γ is exiting the cylinder C and ´1 if it is entering the cylinder.

Figure 2.2: Depiction of spectral flow through the cylinder C. The first two curves are entering and are
counted with sign ´1, while the final curve is counted with sign 1.

Pick some point p “ pz, τq P S X C. First suppose that S does not intersect C at time τ except at p. For
any δ ą 0, we can pick ε ą 0 sufficiently small such that the following two statements hold:

1. Write a “ τ ´ ε, b “ τ ` ε. The intersection of S with the slice tpz, tq P pC´ t0uq ˆ r0, 1s | t P ra, bsu is
an embedded curve γ intersecting C transversely at p.

2. The embedded curve γ (and therefore S) does not intersect the cylinder slice tpz, tq P pC ´ t0uq ˆ
r0, 1s | |z| “ eδ, t P ra, bsu.

By Theorem 2.1.8, it follows that the operator

D`pZ`, gt, βtq : L2
1,δpZ`;S`q Ñ L2

δpZ`;S´q

is Fredholm for all t P ra, bs.
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They are isomorphic to a continuous path of Fredholm operators in the standard L2 space, so it follows
that

indδD
`pZ`, ga, βaq “ indδD

`pZ`, gb, βbq.

. Then we have the following two change of index formulae:

indD`pZ`, ga, βaq ´ indδD
`pZ`, ga, βaq “

ÿ

1ă|z|ăeδ

dapzq,

indD`pZ`, gb, βbq ´ indδD
`pZ`, gb, βbq “

ÿ

1ă|z|ăeδ

dbpzq.

It follows that

indD`pZ`, gb, βbq ´ indD`pZ`, ga, βaq “
ÿ

1ă|z|ăeδ

dbpzq ´
ÿ

1ă|z|ăeδ

dapzq.

By Theorem 2.3.1, any point pz, tq on the embedded curve γ satisfies dtpzq “ 1. Furthermore, by def-
inition any pair pz, tq for 1 ă |z| ă eδ and t P ra, bs has dtpzq ą 0 (and therefore dtpzq “ 1) if and only if
pz, tq P γ.

Then, since γ is an embedded smooth curve, by making δ and ε sufficiently small it can be fixed such
that the projection of γ onto the time coordinate is injective.

It follows that, for any t P ra, bs, the sum
ř

1ă|z|ăeδ dtpzq is equal to 1 if γ is in the region t1 ă |z| ă eδu

at time a, and 0 otherwise.
If γ is entering the cylinder, then it is in this region at time a and outside of this region (i.e. inside the

cylinder) at time b. Therefore, in this case,

indD`pZ`, gb, βbq ´ indD`pZ`, ga, βaq “ ´1.

On the other hand, if γ is exiting the cylinder, then it follows that

indD`pZ`, gb, βbq ´ indD`pZ`, ga, βaq “ 1.

If there are multiple points p1, . . . , pk in the intersection of S and C at time τ , then since they are isolated
the proof proceeds in an identical manner. The only difference is that each point pi will contribute˘1 to the
change of index from time a to b depending on the direction of the embedded curve around it.

If p “ pz, τq, q “ pz1, τ 1q are two points in SXC such that τ 1 ą τ and S does not intersect C at any time in
the interval pτ, τ 1q, then the operators D`pZ`, gt, βtq for all t P pτ, τ 1q form a continuous path of Fredholm
operators. It follows that

indD`pZ`, gb, βbq “ indD`pZ`, ga, βaq

for any a, b P pτ, τ 1q.
Adding up all of the contributions to the change of index on the interval r0, 1s, we have proven the

following change of index formula.

Theorem 2.3.2. For any two regular pairs pg0, β0q and pg1, βq and a special path pgt, βtq between them, the indices
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of the respective Dirac operators differ by the spectral flow:

indD`pZ`, g1, β1q ´ indD`pZ`, g0, β0q “ SFpgt, βtq.

It remains to prove Theorem 2.3.1.
Recall from the proof of Theorem 2.1.8 that, for z P C ´ t0u with |z| “ 1, elements of the kernel of

D̂`z pX, g, βq correspond to the reducible solutions for the blown-up Seiberg-Witten equations for the pair
pg, βq. This yields the following additional proposition:

Proposition 2.3.3. The points of SXC are in bijection with the spaceM0 of reducible solutions from Theorem 1.3.3.

This correspondence will be useful in proving the theorem. In particular, understanding the local struc-
ture of the parameterized moduli space PMpX, gt, βtq near the reducible boundary points will be crucial,
as it will be used to shed light on the corresponding local structure of the spectral set S near the cylinder C.

Recall parameterized moduli space that was briefly mentioned in the first chapter. The space PZ Ă

BσpXq ˆ r0, 1s was defined as the subset of tuples pA, s, ϕ, tq such that D`Aϕ “ 0, where the Dirac operator
of course depends on the metric gt.

This space PZ is a Hilbert manifold with boundary BZ equal to the intersection of PZ with the lo-
cus ts “ 0u. Then, PMpX, gt, βtq is equal to Pχ´1p0q, where Pχ is the map from PZ into the space of
imaginary-valued self-dual two-forms defined by

pA, s, ϕ, tq ÞÑ F`A ´ s
2ρpϕϕ˚q0 ´ d

`βt.

The space of reducible solutions M0 Ď PMpX, gt, βtq is in turn equal to Bχ´1p0q, where Bχ is the
restriction of Pχ to BZ .

Since the path pgt, βtq has regular endpoints, the space PMpX, gt, βtq is a manifold (see Theorem 1.3.3).
This implies that the operator Pχ is transverse to the zero section at any reducible point pA, 0, ϕ, τq PM0.
This in turn implies that its linearization D at any such point is surjective with kernel equal to the tangent
space ofM0 at that point. However, the spaceM0 is zero-dimensional, so D has trivial kernel.

We have arrived at the primary reason for choosing a special path pgt, βtq. The fact that the path pgt, βtq
has a constant metric term near any reducible solution gives the linearization of BZ a particularly simple
form, since it does not depend on any derivatives of the path of metrics.

The tangent space of BZ at pA, 0, ϕ, τq is a subset of the space of tuples of the form pb, ψ, uq, where b is an
imaginary-valued one-form, ψ is a unit-length positive spinor, and u is a real number. This tuple is required
to satisfy the equations

ρpbqϕ`D`Aψ “ 0

xϕ,ψyL2 “ 0

d˚b “ 0.

The L2 inner product taken in the second equation is with respect to the metric gτ .
The linearization D is the map sending

pb, ψ, uq ÞÑ d`b´ ud`s 9β

where 9β is a shorthand for the time derivative of the path βt at t “ τ .
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For algebraic convenience, change variables and set a “ b ´ u 9β. Combined with the other equations
defining the tangent space, it follows that a tuple pa, ψ, uq is in the kernel of the linearized operatorD if and
only if

d˚a “ 0

d`a “ 0

xϕ,ψyL2 “ 0

ρpaqϕ` u ¨ ρp 9βqϕ`D`Aψ “ 0.

Since the kernel is empty, this system of equations only has the solution p0, 0, 0q. Denote this system of
equations by (S2).

It will also now be required that, for each metric gt, the defining map ft : X Ñ S1 is harmonic for the
metric gt. A harmonic map f : M Ñ N between Riemannian manifolds M and N with respective metrics
g and h is a smooth map that is a critical point for the energy functional:

Epfq “

ż

M

||df ||2dvolM .

The general theorem for existence and uniqueness of harmonic maps is a theorem of Eells and Lemaire
([EL78]), although the theorem below for N “ S1 is a consequence of basic Hodge theory.

Theorem 2.3.4. For any metric g on a manifold X satisfying assumption (A1), there exists a unique harmonic map
f : X Ñ S1 up to translation by the action of S1 such that the pullback f˚pdθq represents a generator of H1pX;Zq.

All of the theory above will be used now to prove a couple of technical lemmas, which will then finish
off the proof of Theorem 2.3.1.

Lemma 2.3.5. For any pgτ , βτ q in the path, when |z| “ 1, the quantity N “ dimCpker D̂`z pX, gτ , βτ qq is at most
one.

Proof. Recall the proof of Theorem 2.1.8. Pick z P C ´ t0u such that the operator D̂`z pX, gτ , βτ q is not
invertible.

Let A0 be the base spin connection. For any z such that |z| “ 1 and ϕ P ker D̂`z pX, gτ , βτ q of unit L2

norm, the tuple
pAz “ A0 ` βτ ´ log z ¨ f˚τ pdθq, 0, ϕq

is a reducible solution to the blown-up Seiberg-Witten equations for the metric pgτ , βτ q.
Therefore, before quotienting out by gauge equivalence, the reducible solutions for a fixed z form a

sphere of dimension 2N ´ 1. After quotienting out by gauge equivalence, this becomes a manifold of
dimension 2N ´ 2.

By Theorem 1.3.3, the moduli space of reducible solutions has dimension zero. It follows that N must
be equal to one in this case, and at most one overall.

The following lemma extends this statement for operators where |z| is very close to 1.

Lemma 2.3.6. Fix z P C such that |z| “ 1 and τ P r0, 1s such that D̂`z pX, gτ , βτ q has kernel of complex dimension
one. Then there exists a neighborhood U of pz, τq in C´t0uˆr0, 1s such that the operator D̂`z1pX, gτ 1 , βτ 1q has kernel
of complex dimension at most one for any pz1, τ 1q P U .

37



Proof. Since D̂`z pX, gτ , βτ q has kernel of dimension one, by the proof of Lemma 2.3.5 this implies that there
is a reducible solution to the Seiberg-Witten equations for the pair pgτ , βτ q.

Since the path is a special path, one can then fix γ ą 0 such that gτ 1 “ gτ for all τ 1 P pτ´γ, τ`γq. Restrict
τ 1 to this interval.

Pick some z1 P C´ t0u. Fix µ P C such that eµ “ z, and µ1 P C such that eµ
1

“ z1.
Then the operator D̂`z1pX, gτ 1 , βτ 1q is equal to D̂`z pX, gτ , βτ q ` pµ1 ´ µqρpf˚pdθqq. By choosing z1 in an

arbitrarily small neighborhood of z, the quantity |µ ´ µ1| can be made arbitrarily small. It follows that
D̂`z1pX, gτ 1 , βτ 1q is a small perturbation of D̂`z pX, gτ , βτ q.

By Theorem 5.17 of Chapter IV of [Kat66] (the standard stability result that has been mentioned a cou-
ple of times), this implies that the kernel of D̂`z1pX, gτ 1 , βτ 1q has dimension less than or equal to that of
D̂`z pX, gτ , βτ q as desired.

Recall our definition of the operator Pµ from 2.1.18. This operator also satisfies Pµ`2πi » Pµ, so it is
well-defined to write Pz for the operator Plog z for any choice of log z.

Lemma 2.3.7. For any pgτ , βτ q in the path and z P C ´ t0u such that |z| “ 1 and D̂`z pX, gτ , βτ q is not invertible,
dpzq “ rankPz “ 1.

Proof. By the previous lemma, the kernel of D̂`z pX, gτ , βτ q has dimension one.
It follows by definition that dpzq ě 1. Suppose dpzq ą 1.
Recall that dpzq is the dimension of the vector space of solutions to the system (S1):

D̂`z pX, gτ , βτ qpψkq “ ρpf˚τ pdθqqpψk´1q

for k from ´d` 1 to ´1 and
D̂`z pX, gτ , βτ qpψ´dq “ 0.

It follows that the sections ψk for k from ´d ` 2 to ´1 are nonzero only if ψ´d`1 is nonzero. Therefore,
given that dpzq ą 1, there must exist a solution to system (S1) with both ψ´d and ψ´d`1 nonzero.

Without loss of generality, normalize ψ´d to unit L2 length. Replace ψ´d`1 with the orthogonal projec-
tion ψ´d`1 ´ xψ´d`1, ψ´dyL2ψ´d. Then ψ´d`1 is orthogonal to ψ´d and the two spinors still satisfy the last
two equations in system (S1), although the rest of the system may not be satisfied anymore. Furthermore,
since the function fτ is harmonic, the pullback f˚pdθq is a harmonic one-form.

Again letAz “ A0`βτ`log z ¨f˚pdθq. Then the tuple pAz, 0, ψ´d, τq is a reducible solution to the Seiberg-
Witten equations as before. It follows that the tuple pf˚τ pdθq, ψ´d`1, 0q is in the kernel of the linearized Dirac
operator D at the point pAz, 0, ψ´d, τq (with the algebraic rearrangement carried out above).

Since the linearized Dirac operator is injective, this implies that ψ´d`1 must be zero. However, the initial
assumption required it to be nonzero, so we arrive at a contradiction and dpzq “ 1. It remains to show Pz

has rank 1. Reverting for a moment to the old notation, pick η P C such that eη “ z. Then dpηq “ 1, and the
problem is to show that

Pη “

ż

L

Rµdµ

has rank 1, where Rµ is the inverse of D̂`µ pX, gt, βtq.
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The inverse Rµ is meromorphic on the complex plane, so its Laurent expansion at η can be written as

Rη “
8
ÿ

k“´d

Akpµ´ ηq
k

where Ak are differential operators.
By the residue theorem, the operator A´1 is equal to 1

2πiPη . Then, the negative Laurent coefficients of
D̂`µ pX, gτ , βτ qRµ “ 1 vanish. The operators Ak solve the system

D`pX, gτ , βτ qAk “ η ¨ ρpf˚τ pdθqqAk´1

for k “ ´d` 1 to ´1 and
D`pX, gτ , βτ qA´d “ 0.

Take a set of spinors ψk P imAk for every k from ´d to ´1. Then these spinors solve system (S1).
It follows by definition that

1 “ dpηq ě
´1
ÿ

k“´d

rankAk ě rankPη.

This also shows immediately that all but one of the operators Ak must be equal to zero.
Suppose Pη is equal to zero. Then, suppose that Ak has rank one for some k ‰ ´1. For any nonzero

spinor ψ in the image of Ak, it follows from the system of equations (S1) that ψ is both in the kernel of the
Dirac operator and the operator ρpf˚pdθqq. Note that in the case k “ ´1, one would only have ψ being in
the kernel of the Dirac operator.

However, ρpf˚pdθqq maps the kernel of the Dirac operator injectively to the orthogonal complement of
its image. Since ψ is nonzero, we arrive at a contradiction. Therefore, it follows that Pη has rank one as
desired.

Combining Lemma 2.3.7 and Theorem 2.1.18, it follows that the intersection of S with a sufficiently
small neighborhood of a point in S X C is an embedded curve.

At any point p “ pz, τq P S X C, choose some such embedded curve around p and project onto the
complex coordinate to obtain a smooth embedded curve γ : pτ ´ ε, τ ` εq Ñ C´ t0u.

Define the smooth family of Dirac operators D`γ over pτ ´ ε, τ ` εq by

D`γ ptq “ D̂`γptqpX, gt, βtq “ D`pX, gt, βtq ´ γptqρpf
˚
t pdθqq.

By making ε sufficiently small and combining Lemma 2.3.5 and Lemma 2.3.6, the kernel D`γ ptq is one-
dimensional for all t P pτ ´ ε, τ ` εq. Write kerD`γ for the subset of pτ ´ ε, τ ` εq ˆ L2

1pX;S`q equal to the
union of the subsets ttu ˆ kerD`γ ptq for all t P pτ ´ ε, τ ` εq. This space inherits a topology from its ambient
space, and projection onto the time coordinate gives a natural map kerD`γ Ñ pτ ´ ε, τ ` εq.

The following lemma is well-known given the fact that kerD`γ ptq has constant dimension for every t.

Lemma 2.3.8. The space kerD`γ is a vector bundle over pτ ´ ε, τ ` εq.

Now we can show that the spectral curve γ is transverse to the cylinder C.

Lemma 2.3.9. The time derivative 9γ of γptq at t “ τ is nonzero.
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Proof. The linearization of this family at t “ τ , using the fact that the path is special, is equal to the operator
ρp 9β ´ 9γf˚pdθqq.

Suppose for the sake of contradiction that 9γ “ 0. By the previous lemma, choosing a local non-vanishing
section of the vector bundle kerD`γ around τ and normalizing produces a family of unit-length spinors tϕtu
parameterized by t P pτ ´ ε1, τ ` ε1q for some small ε ą ε1 ą 0 such that D`γptqϕt “ 0.

Differentiating this equation at t “ τ and applying the fact that 9γ “ 0, it follows that

ρp 9βqϕτ `D
`
γ pτq 9ϕ “ 0.

Since the spinors ϕt have unit length, 9ϕ is L2 orthogonal to ϕτ .
However, then the tuple p0, 9ϕ, 1q satisfies the system of equations for the linearized operator at the

reducible solution pA0 ` βτ ´ log z ¨ f˚pdθq, 0, ϕτ , τq PM0, so we arrive at a contradiction and 9γ cannot be
equal to zero.

The lemma immediately implies that the embedded curve around p has transverse intersection with the
cylinder.

It remians to show the final statement of Theorem 2.3.1. This is immediate by Lemma 2.3.6.

2.4 Orientations

There is a correspondence between points in the cylinder S X C and reducible solutionsM0.
The difference #MpX, g0, β0q ´#MpX, g1, β1q is an oriented count #M0.
Meanwhile, the difference indCD

`pZ`, g0, β0q´ indCD
`pZ`, g1, β1q is an oriented count of points in the

cylinder, totaled up to the spectral flow SFpgt, βtq.
The only remaining obstacle is to show that these oriented counts are the same: A point inM0 will be

counted with the same sign as its corresponding point in S X C is counted in the spectral flow, and vice
versa.

To prove this, it is of course necessary to understand exactly how the orientation is constructed on the
moduli spaceM0.

Pick a point pA, 0, ϕ, τq PM0. Write D1 for the linearized operator of Bχ at pA, 0, ϕ, τq, defined by

pa, ψ, uq ÞÑ pd`a, d˚a, ρpaqϕ` u ¨ ρp 9βqϕ`D`Aψq

with domain consisting of tuples pa, ψ, uq for a an imaginary-valued one-form, ψ a positive spinor in the L2

orthogonal complement of ϕ, and u a real number.
An orientation of the point pA, 0, ϕ, τq is equivalent to an orientation of the kernel of D1, but a priori

there is no canonical way to orient the kernel of this operator. However, there is a canonical way to orient
the kernel of a related operator.

The operator D0 is then defined by

D0 : pa, ψ, uq ÞÑ pd`a, d˚a,D`Aψq.

From the proof of Lemma 2.3.5, it was discovered that, at any reducible solution, the Dirac operator D`A
has kernel of dimension one. Therefore, if D`Aψ “ 0, it follows that ψ must be a scalar multiple of ϕ.
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It follows that the kernel ofD0 are elements of the form pa, 0, uq for a a harmonic, imaginary-valued one-
form and u any real number. The top exterior power of kerD0 is isomorphic to detH1pX;Rq. Therefore, the
homology orientation of X determines an orientation of kerD0.

In addition, cokerD0 » cokerD`A , which is canonically oriented by the complex structure on the spinor
bundle.

For a parameter s P r0, 1s, and define the path of operators Ds by

Ds : pa, ψ, uq ÞÑ pd`a, d˚a, s ¨ ρpaqϕ` us ¨ ρp 9βqϕ`D`Aψq.

This is a continuous path of Fredholm operators connecting D0 to D1.
Suppose for a moment that the kernels ofDs have the same dimension for all s P r0, 1s. It follows that the

union of the kernels form a vector bundle over r0, 1s (see Lemma 2.3.8). Moreover, any vector bundle over
r0, 1s is trivial. Therefore, an orientation on the kernel of D0 canonically induces an orientation on every
other fiber of the vector bundle (it can be checked that this is independent of the choice of trivialization).

However, this situation is not guaranteed. The dimension of the kernel of Ds is not necessarily a contin-
uous function in s, i.e. the dimension of the kernel may “jump” as s changes.

This situation can be salvaged, however, if the dimension of kerDs is sufficiently well-behaved. For
our purposes, it suffices to consider the situation where the dimension of kerDs is zero except in a finite,
discrete subset of r0, 1s.

Outside of these “jumps”, the kernels of the operatorsDs are locally trivial and orientation can be trans-
ported in the manner described above.

Pick s P r0, 1s such that the kernel of Ds has real dimension one. Write D˚s for the L2 formal adjoint of
Ds, and write ∆s for the operator D˚sDs. Then, the orientation across the “jump” s is transported using the
spectral flow of the family ∆s. This idea is based on the original work done for Cauchy-Riemann operators
on Riemann surfaces by Quillen in [Qui85]. Note that ∆s is self-adjoint, and therefore has a real spectrum.

For any s P r0, 1s, the “formal determinant” detp∆sq P R can be defined as follows. Let z be a complex
number with real part greater than 1. Then, define the zeta function

ζpzq “
ÿ

λ

λ´z

where the sum is over all nonzero eigenvalues of ∆s.
This function can be continued to a meromorphic function on the complex plane that is holomporphic

at z “ 0. Then, set
detp∆sq “ expp´ζ 1p0qq

if ∆s has no kernel and
detp∆sq “ 0

if it has a kernel.
As a consequence of the work of Quillen, there is a holomorphic line bundle L over r0, 1s and a canonical

section σ of L equipped with a metric such that

||σpsq||2 “ detp∆sq

for every s P r0, 1s.
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Therefore, it follows that detp∆sq is a smooth real function of s that vanishes exactly when Ds is not
invertible. Pick some s P r0, 1s such that Ds is not invertible.

For s1 ‰ s, an orientation of the kernel of Ds is simply a choice of an element of the two-element set
t´1, 1u. Suppose a uniform orientation o P t´1, 1u has been chosen for all s1 P ps ´ ε, sq. Then, any
s2 P ps, s ` εq is oriented in the following manner. For a choice of small enough ε ą 0, the determinant
function detp∆tq is either crossing from negative to positive or from positive to negative for t P ps´ε, s`εq.
In the former case, the kernel of Ds2 is oriented by o, while in the latter case it is oriented by ´o.

Observe for s ‰ 0, the operator Ds is injective. Otherwise, if pa, ψ, uq were a non-zero element in the
kernel of Ds, then pa{s, ψ, u{sq would be a non-zero solution of system (S2). However, no such solutions
exist.

Therefore, it suffices to calculate the spectral flow contribution at 0. Combined with the canonical ori-
entation on the kernel of D0, this induces a canonical orientation on Ds for all s ą 0.

Although this is a very natural way to define the change of orientation along a path, it is not immediately
amenable to calculation. Equation (1.5.9) of [Nic00] provides a convenient way to calculate this spectral flow
contribution. Fix a point pA, 0, ϕ, τq PM0.

Write 9D “ d
ds |s“0Ds. Restricting this operator to the kernel of D0 and composing with projection onto

the cokernel of D0, this produces a linear isomorphism

R0 : kerD0 Ñ cokerD0.

Let signpR0q P t´1, 1u denote whetherR0 is orientation-reversing or orientation-preserving respectively.
Then the spectral flow contribution at 0 is in fact equal to signpR0q, although the proof of this fact is

outside the scope of this thesis.
It remains to find signpR0q.
The operator 9D can be written as the map

pa, ψ, uq ÞÑ p0, 0, ρpaqϕ` uρp 9βqϕq.

Letting Π be the projection from the space of negative spinors onto the cokernel of D`A , the operator
R0 : kerD0 Ñ cokerD`A can be written as the map

pa, 0, uq ÞÑ Πpρpaqϕ` uρp 9βqϕq.

Any harmonic imaginary-valued one-form a is an imaginary multiple of the harmonic form f˚pdθq. It
is a quick calculation to show that Πpρpaqϕq ‰ 0. If it were equal to zero, then there is a spinor ψ orthogonal
to ϕ such that D`Aψ “ ρpaqϕ. However, then pa, 0, ψq is a non-trivial solution to system (S2), which yields a
contradiction.

Therefore, the spinors Πpρpaqϕq and iΠpρpaqϕq form a positively-oriented basis of cokerD`A .
Write fτ “ f . Recall that the connection A is of the form A0 ` βτ ´ log z ¨ f˚pdθq for A0 the background

spin connection and |z| “ 1. The point pz, τq lies in the spectral set S XC discussed in the previous section,
so by Theorem 2.3.1 there is an embedded curve pγptq, tq on the interval pτ ´ ε, τ ` εq for some small ε ą 0

intersecting C transversely at pz, τq.
Write At for the corresponding connection A0`βt´ log γptq ¨ f˚pdθq. Differentiating at t “ τ , we get the
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one-form
9A “ 9β ´ Btplog γptqq ¨ f˚pdθq.

Let ϕt be a path of spinors such that ϕt P kerpD`Atq for all t P pτ ´ ε1, τ ` ε1q for some small ε ą ε1 ą 0.
Taking the derivative at t “ τ , it follows that

D`A 9ϕ` ρp 9Aqϕ “ 0.

Therefore, D`A 9ϕ “ ρpBtplog γptqq ¨ f˚pdθq ´ 9βqϕ. In particular, this implies

Πpρp 9βqϕq “ ΠpρpBtplog γptqq ¨ f˚pdθqqϕq

Write log γptq “ xptq ` iyptq, and Btplogγptqq “ 9x` i 9y.
Then we can write

Πpρp 9βqϕq “ 9xΠpρpf˚pdθqqϕq ` i 9yΠpρpf˚pdθqqϕq.

Recall from above that v1 “ ρpf˚pdθqϕq and v2 “ iρpf˚pdθqϕq form a positively oriented basis of
cokerD`A .

Pick the positively-oriented basis e1 “ p0, 0, 1q, e2 “ pif
˚pdθq, 0, 0q of kerD0.

Then R0 is the linear map e1 ÞÑ 9xv1 ` 9yv2, e2 ÞÑ v2.
Then signpR0q is just equal to the sign of detpR0q, which by definition is equal to 9x. We conclude that

the point pA, 0, ϕ, τq is oriented by the sign of

d

dt
|t“τRe log γptq.

It is clear that 9x ‰ 0. If it were equal to 0, then the curve γptq would not intersect the cylinder C
transversely by definition.

Therefore, p has sign 1 if Re log γptq is increasing, which is equivalent to γptq exiting the cylinder C. It
has sign ´1 if Re log γptq is decreasing, which is equivalent to γptq entering the cylinder C. It follows that
the sign of p is the same as the contribution of pz, τq to the spectral flow.

We conclude the following theorem.

Theorem 2.4.1. #M0 “ SFpgt, βtq.

Combining this with Theorem 1.3.3 and Theorem 2.3.2 immediately implies Theorem 2.1.12, that

λSW pXq “ #MpX, g, βq ´ indCD
`pZ`, g, βq ` signpZq{8

is independent of the choice of regular pair pg, βq.
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Chapter 3

The Splitting Formula

The results of Chapter 2 required only that X is a manifold satisfying assumption (A1). Now, suppose that
X also satisfies (A2).

Let Y be an embedded integral homology 3-sphere generating H3pX;Zq. Then, the second Stiefel-
Whitney class of Y vanishes and so it certainly admits a spin structure. Given some spin 4-manifold Z

bounding Y with spin structure extending the one on Y , the Rokhlin invariant ρpY q P Z{2 of Y is defined to
be the reduction modulo 2 of the integer signpZq{8.

It is an immediate consequence of the Hirzebruch signature theorem that ρpY q does not depend on the
choice of manifold Z. Furthermore, for any two choices Y , Y 1 of integral homology 3-spheres generating
H3pX;Zq, ρpY q “ ρpY 1q. To see this, let rX be the infinite cyclic cover constructed by cutting open along Y .
Then there is a lift of Y 1 embedded inside this cover not intersecting some copy of Y , so there exists some
homology cobordism between Y and Y 1. The Rokhlin invariant is invariant under homology cobordism,
so ρpY q “ ρpY 1q.

Therefore, the Rokhlin invariant is an invariant of the manifold X , denoted by ρpXq.
It is proven in Section 9 of [MRS11] that λSW pXq reduces modulo 2 to the Rokhlin invariant ρpXq. It is

also well known (see [Sav02]) that the Rokhlin invariant is the modulo 2 reduction of the Casson invariant of
Y , which is in turn related to the instanton Floer homology of Y (see [Tau90] for some important work in this
direction). Therefore, one can in some sense consider λSW pXq to be a Seiberg-Witten version of the Casson
invariant, and the Floer homology theory that it should be related to is instead the Seiberg-Witten-Floer
homology of Y .

The only “additional data” needed to reconstruct X from the homology 3-sphere Y is the cobordism W

from Y to itself. This loosely motivates the possibility that λSW pXq can be split into a sum of two invariants:
one arising from the cobordism W , and another arising from the Seiberg-Witten-Floer homology of Y .

A splitting formula of this exact form has been recently derived by Lin, Ruberman, and Saveliev in the
paper [LRS17]. This chapter will be an exposition of this derivation, and all results are attributed to the
aforementioned paper unless explicitly stated otherwise.

The first section will be a brief overview of Seiberg-Witten-Floer homology and its main properties. This
will provide the notation and definitions necessary to state the splitting formula in Section 2. Following
this, some basic homological algebra and additional technical inputs will be used to reduce the proof of
the splitting formula to two distinct calculations. The first calculation, which will take up Section 3, is the
calculation of the index of the end-periodic Dirac operator on the manifold X with a “stretched neck”.
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The second calculation, which will take up Section 4, will be a count of the solutions to the Seiberg-Witten
equations on this “stretched neck” version of X with a carefully chosen metric and perturbation. The
final section will discuss an application towards an obstruction to positive scalar curvature on manifolds
satisfying (A1) and (A2).

An integral part of this count of solutions is a technical eigenvalue estimate proven in Section 7 of
[LRS17], and its subsequent application to the compactness theorem proved in the first subsection of Section
4 of this chapter. This chapter will focus more on the direct applications of the underlying theory of Seiberg-
Witten-Floer homology to proving the splitting formula, and as a result will not discuss the proof of this
estimate.

3.1 Seiberg-Witten-Floer homology

In this section, we present a brief exposition of Seiberg-Witten-Floer homology and its main properties. The
actual construction of this Floer homology, as with others, is quite technical and cannot be done justice in
the limited space of this thesis. Therefore, we will defer the reader to [KM07] for a wonderfully written,
rigorous exposition.

Our goal here is rather to clear the quickest path possible to understanding the splitting formula for λSW
and its proof, while still maintaining a coherent and logical progression of ideas. Most proofs are omitted
or only briefly outlined.

3.1.1 Morse homology

Kronheimer and Mrowka’s construction of Seiberg-Witten-Floer homology can be thought of as an infinite-
dimensional version of Morse homology on a manifold with boundary. To motivate our exposition of the
former, we will sketch here the construction of the latter.

First, we explain the construction of Morse homology for a closed, oriented Riemannian manifold B. A
rigorous treatment can be found in [AD14].

For a smooth function f : B Ñ R, a point x P B is a critical point of f if pdfqx “ 0.
Under the isomorphism of the tangent and cotangent bundles using the metric, the one-form df is iden-

tified with the gradient vector field gradf . In other words, gradf is the vector field satisfying

xgradf, V y “ dfpV q

for any other vector field V .
Taking the Levi-Civita derivative of gradf , we obtain the Hessian Hpfq. The Hessian is a linear map

taking vector fields to vector fields. It is a quick exercise to show further that it is a self-adjoint linear map.
Now let x P B be a critical point of the function f . We say x is a non-degenerate critical point if the

Hessian at x is non-singular.
The function f is a Morse function if all of its critical points are nondegenerate. Among other things, this

ensures that the critical points are a discrete (and therefore finite) set of points in B.
As an example, the “height functions” on S2 or the 2-torus standing on its end are both Morse functions.

The critical points are depicted below.
Let x be our non-degenerate critical point as above. Since the Hessian is symmetric, it is diagonalizable.

Furthermore, it is non-degenerate and so its spectrum does not contain zero. It follows that there exists a
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Figure 3.1: The critical points (green) of the height functions on S2 (left) and T 2 (right).

splitting
TxB “ K`x ‘K

´
x

of the tangent space into the positive and negative eigenspaces of the Hessian. The index of x, denoted
indpxq, is the dimension of K´x . We present our two examples again, now with the indices of the critical
points labeled.

Figure 3.2: The critical points with indices labelled.

Morse homology is constructed by counting gradient flow lines between critical points. Let x, y be two
critical points. The space of flow lines from x to y, denoted byMpx, yq, is the space of (non-constant) smooth
maps u : RÑ B such that:

• du
dt pt0q “ gradfpupt0qq for every t0 P R.

• limtÑ´8 uptq “ x.

• limtÑ8 uptq “ y.

Some examples of gradient flow lines for the height functions on S2 and the torus are drawn below.
It is instructive to examine the gradient flow lines of the height function on the torus and the sphere.

First, observe that there are no flow lines going from a critical point of lower index to a critical point of
higher index. Second, there seem to be finitely many flow lines between points of adjacent index, but
infinitely many otherwise. Third, the flow lines from the top of S2 to the bottom of S2 can be identified
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Figure 3.3: Some gradient flow lines (blue) for the height functions on S2 and T 2.

with S1, a 1-dimensional compact manifold, by taking the midpoint of each flow line. Therefore, we may
expect that flow lines between critical points of higher difference in indices form smooth manifolds.

If uptq is a flow line, then the translation vptq “ upt ` t0q has the exact same image as u in the manifold
B. Therefore, the space of flow lines that corresponds with our topological intuition is the unparameterized
space of flow lines

M̌px, yq “Mpx, yq{R

where R acts freely by translation, defined explicitly as pt0 ¨ uqptq “ upt` t0q for t0 P R.
Nearly all of our observations about flow lines are true in general, but not necessarily for any choice of

Morse function. The main issue is one of transversality.
Define the unstable manifold Ux of a critical point as follows. The gradient of f has a well-defined flow

everywhere on the manifold B. Therefore, any point x1 P B is part of a unique flow line u. Then Ux consists
of all the points x1 such that their associated flow line u satisfies

lim
tÑ´8

uptq “ x.

Similarly, the stable manifold of a critical point is the set of all points whose flow lines satisfy

lim
tÑ8

uptq “ x.

In less formal terms, Ux consists of all points that flow backwards and settle at x under the gradient flow,
while Sx consists of all points that flow forwards and settle at x.

Basic Morse theory assures as that the stable and unstable manifolds are indeed manifolds. Furthermore,
Ux has dimension indpxq, while Sx has dimension dimpBq ´ indpxq (see [AD14] for a proof of this). By
definition, we can for two critical points x ‰ y write Mpx, yq as the intersection of the unstable manifold of
x and the stable manifold of y:

Mpx, yq “ Ux X Sy.

Note that if x “ y, then this identity does not hold true since Mpx, xq only consists of non-constant flow
lines, and is therefore empty.

If this intersection were transverse, then from our discussion above it would be immediate that Mpx, yq
is a manifold of dimension indpxq ´ indpyq when this number is positive, and empty when it is negative.
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Applying the free R-action, we find that the dimension of M̌px, yq is one lower.
We can now state our full theorem on the structure of the spaces of flow lines.

Theorem 3.1.1. There is a residual set of Morse functions f such that the spaces M̌px, yq are manifolds for any pair
of critical points x, y P B. Furthermore, M̌px, yq has dimension indpxq ´ indpyq ´ 1 if indpxq ą indpyq, and is
empty if indpxq ď indpyq.

A Morse function f in this residual set is said to satisfy the Morse-Smale condition.

In the process of the proof of this theorem, it is also shown that the parameterized spaces Mpx, yq are
manifolds of dimension indpxq´indpyq if indpxq´indpyq if indpxq ą indpyq, and are empty if indpxq ď indpyq.

Now we have partially confirmed our intuition from before. If indpxq ´ indpyq “ 1, then the space of
flow lines M̌px, yq is a manifold of dimension zero, and therefore a discrete set of points. However, we do
not know yet if it is finite. More generally, we do not know immediately whether the spaces M̌px, yq are
compact.

In fact, they are not compact in most cases. One must construct an appropriate compactification, which
in this case will be the space of broken flow lines. A broken flow line from a critical point x to a critical point
y is defined by a sequence of critical points x “ a0, a1, . . . , ak “ y and a sequence of flow lines γ1, . . . , γk

such that γi P M̌pai´1, aiq for every i.
The space of broken flow lines from x to y is denoted by M̌`px, yq. It can be given a rather natural topology

such that the following two important theorems are true.

Theorem 3.1.2. The space M̌`px, yq is compact.

Theorem 3.1.3. The embedding M̌px, yq ãÑ M̌`px, yq is continuous. If indpxq ´ indpyq “ 2, then M̌`px, yq is a
compact manifold with boundary consisting of exactly the broken trajectories:

BM̌`px, yq “
ď

crit. points z

M̌px, zq ˆ M̌pz, yq.

Theorem 3.1.2 confirms that the space M̌px, yq is finite when indpxq ´ indpyq “ 1 since M̌px, yq “

M̌`px, yq.
Theorem 3.1.3 is the prototypical example of what is known in the Floer theory literature as a gluing

theorem. This comes roughly from the equivalent idea that two pieces of a broken flow line meeting at a
critical point can be “glued” together, i.e. there is some arbitrarily small deformation into a continuous flow
line.

We are now ready to define Morse homology, at least over Z{2. The full definition of Z requires orienting
our spaces of flow lines and is discussed in [AD14].

Let f be our Morse function satisfying the Morse-Smale condition. Define the Z{2-vector space Ck “
CkpB, f ;Z{2q to be the space generated by formal sums with coefficients in Z{2 of the critical points of index
k.

There are natural boundary maps Bk : Ck Ñ Ck´1 given by counting flow lines. If M̌px, yq has dimension
zero, then let Npx, yq be the number of points in Mpx, yq modulo 2. For some critical point rxs P Ck, we
then define the boundary map by

Bkrxs “
ÿ

crit points y of index k ´ 1

Npx, yqrys.
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Figure 3.4: Gradient flow lines from x to y (left) converging to a broken trajectory from x to z to y (right).

The map B2 : Ck Ñ Ck´2 can be written as

B2rxs “
ÿ

y

p
ÿ

z

Npx, zqNpz, yqqrys

where the sum is taken over all critical points y of index k ´ 2 and critical points z of index k ´ 1.
For a fixed critical point y of index k ´ 2, the sum

ř

z Npx, zqNpz, yq is exactly a modulo 2 count of the
broken trajectories from x to y, i.e. the number of points in the zero-dimensional compact manifold

ď

crit. points z

M̌px, zq ˆ M̌pz, yq.

By Theorem 3.1.3, this manifold is the boundary of the compact 1-dimensional manifold M̌`px, yq. As
the boundary of a 1-dimensional manifold, it must have an even number of points. We conclude:

Corollary 3.1.4. B2 “ 0.

The set of vector spaces tCkpB, f ;Z{2qu along with the boundary maps tBku therefore a chain complex,
and the homology of this chain complex is the Morse homology HMorse

˚ pB, f ;Z{2q.
There are a few more verifications that we will not make here. First, Morse homology is indepen-

dent of the choice of Morse function f , so we can write Morse homology as a single sequence of groups
HMorse
˚ pB;Z{2q.

We can compute Morse homology explicitly for the sphere S2 and the torus T 2 with the height function
as the Morse function.

There are two critical points on S2 for the height function. One is of index 2, and one is of index zero.
Therefore, the maps in the Morse chain complex are all the zero map and we conclude

HMorse
k pS2;Z{2q “

$

&

%

Z{2 k “ 0, 2

0 otherwise
.

On the other hand, the torus has four critical points. Two are of index 1, one is of index zero, and one is
of index two. Now it is necessary to count flow lines, but from examining Figure 3.3, one sees that there are
an even number of flow lines between critical points of adjacent index. Therefore, the maps in the Morse
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chain complex are again the zero map and we conclude

HMorse
k pT 2;Z{2q “

$

’

’

’

&

’

’

’

%

Z{2 k “ 0, 2

Z{2‘ Z{2 k “ 1

0 otherwise

.

As these initial computations may begin to indicate, there is an isomorphism of Morse homology with
the standard singular homology:

HMorse
˚ pB;Z{2q » H˚pB;Z{2q.

3.1.2 Morse homology with boundary

Now we will let B be a compact Riemannian manifold with nonempty boundary BB.
Rather than working with a completely general Morse function on B, it will be easier to work with

Morse functions with gradient vector field tangent to the boundary.
We will follow the setup in Chapter 2 of Kronheimer and Mrowka ([KM07]). Fix a Morse function f

such that gradf is always tangent to the boundary. More precisely, for any x P BB, we have

gradfpxq Ă TxBB Ă TxB.

The critical points of f split into three different types. The first type is critical points in the interior of B.
Critical points on BB are classified into two categories. Let ν denote the unit normal vector field of BB.

At any boundary critical point x P BB, since the gradient of f vanishes and is contained within the tangent
bundle of BB, it is evident that TxBB is an invariant subspace of the Hessian. It follows that ν must be
an eigenvector of the Hessian, and since the Hessian is nondegenerate it has either a positive or negative
eigenvalue. In the former case, the critical point x is called boundary-stable, while in the latter case it is called
boundary-unstable.

Boundary-stable and boundary-unstable critical points admit opposite topological descriptions of their
associated stable and unstable manifolds. If x is boundary-stable, then its unstable manifoldUx is contained
in the boundary BB, while its stable manifold Sx may intersect the interior of B. If x is boundary-unstable,
then its unstable manifold may intersect the interior of B, while its stable manifold is contained in the
boundary BB.

This leads to a new transversality problem that did not arise in the case of empty boundary. If x is
boundary-stable and y is boundary-unstable, then the intersection Mpx, yq “ Ux X Sy cannot hope to be
transverse in B, since the tangent bundles of Ux and Sy are both contained in the tangent bundle of BB. We
call such a space of flow lines boundary-obstructed.

This issue is addressed instead by requiring that the intersection is transverse in BB. In this case, a
dimension count indicates that the expected dimension of Mpx, yq will be indpxq ´ indpyq ` 1 rather than
indpxq ´ indpyq. With this modification, an analogous theorem to Theorem 3.1.1 holds:

Theorem 3.1.5. There is a residual set of Morse functions f such that the spaces M̌px, yq are manifolds for any pair
of critical points x, y P B.

If M̌px, yq is not boundary-obstructed, it has dimension indpxq ´ indpyq ´ 1 if indpxq ą indpyq, and is empty if
indpxq ď indpyq.
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If M̌px, yq is boundary-obstructed, it has dimension indpxq´ indpyq if indpxq ą indpyq, and is empty if indpxq ď

indpyq.

If x and y are two general boundary critical points, thenMpx, yq can intersect the interior ofB if and only
if x is boundary-unstable and y is boundary-stable. In this case, the intersection MBpx, yq “ Mpx, yq X BB

consisting of flow lines that lie on the boundary is a codimension one submanifold of Mpx, yq. The same
holds true for the unparameterized version M̌Bpx, yq “ M̌px, yq X BB.

As before, we can define the space of broken flow lines M̌`px, yq and state the following theorem:

Theorem 3.1.6. M̌`px, yq is compact.

Gluing is a good deal more complicated in the presence of a boundary. The boundary of M̌`px, yq

depends on the types of x and y. We state the full theorem below, and discuss one of the cases in a little
more depth right after. It is not necessary for the rest of this thesis to know the statement of this theorem,
but thinking about the topology behind each of the cases is helpful for understanding the analogous gluing
theorem in Seiberg-Witten-Floer homology.

Theorem 3.1.7. 1. If x and y are both interior critical points, x has index k, and y has index k´2 then M̌`px, yq

has boundary components of the form:

• M̌px, zq ˆ M̌pz, yq, with z an interior critical point of index k ´ 1.

• M̌px, aq ˆ M̌pa, bq ˆ M̌pb, yq, with a a boundary-stable critical point of index k ´ 1, and b a boundary-
unstable critical point of index k ´ 1 (so Mpa, bq is boundary-obstructed).

2. If x is an interior critical point and y is a boundary-stable critical point, x has index k and y has index k ´ 2

then M̌`px, yq has boundary components of the form:

• M̌px, zq ˆ M̌pz, yq, with z an interior critical point of index k ´ 1.

• M̌px, aq ˆ M̌pa, yq, with a a boundary-stable critical point of index k ´ 1.

• M̌px, aq ˆ M̌pa, bq ˆ M̌pb, yq with a a boundary-stable critical point of index k ´ 1, and b a boundary-
unstable critical point of index k ´ 1.

3. If x is a boundary-unstable critical point and y is an interior critical point, x has index k and y has index k´ 2

then M̌`px, yq has boundary components of the form:

• M̌px, zq ˆ M̌pz, yq, with z an interior critical point of index k ´ 1.

• M̌px, bq ˆ M̌pb, yq, with b a boundary-unstable critical point of index k ´ 1.

• M̌px, aq ˆ M̌pa, bq ˆ M̌pb, yq with a a boundary-stable critical point of index k ´ 1, and b a boundary-
unstable critical point of index k ´ 1.

4. If x is a boundary-unstable critical point, y is a boundary-stable critical point, x has index k and y has index
k ´ 2 then M̌`px, yq has boundary components of the form:

• M̌Bpx, yq, the space of flow lines from x to y along BB.

• M̌px, zq ˆ M̌pz, yq, with z an interior critical point of index k ´ 1.

• M̌px, aq ˆ M̌pa, yq, with a a boundary-stable critical point of index k ´ 1.
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• M̌px, bq ˆ M̌pb, yq, with b a boundary-unstable critical point of index k ´ 1.

• M̌px, aq ˆ M̌pa, bq ˆ M̌pb, yq with a a boundary-stable critical point of index k ´ 1, and b a boundary-
unstable critical point of index k ´ 1.

5. If x and y are any boundary critical points, x has index k and y has index k ´ 2 then M̌`px, yq (replaced with
p̌MBq`px, yq in the case where x and y satisfy (4)) has boundary components of the form

• M̌px, zq ˆ M̌pz, yq with z any boundary critical point of index k ´ 1.

Figure 3.5: Interior trajectories converging to a three-component broken trajectory, with the middle compo-
nent on the boundary.

Consider, for example, the situation in part (1) of Theorem 3.1.7, which is illustrated in Figure 3.5. A
sequence of trajectories between two interior critical points can still converge to a two-component trajectory
between three interior critical points. However, the addition of boundary points complicates the matter and
a sequence of trajectories could also split into a three-component trajectory with one component running
along the boundary BB.

The complexity of the boundaries of the compactified spaces of flow lines is represented in the con-
struction of the Morse chain complexes. As before, we will ignore the issue of orientation and work in
characteristic 2. For an integer k, let Cok , Csk, and Cuk be the vector spaces over Z{2 of formal sums of inte-
rior, boundary-stable, and boundary-unstable critical points of index k respectively. Then, define the chain
groups

Ck “ Csk ‘ C
u
k`1,

Čk “ Cok ‘ C
s
k,

Ĉk “ Cok ‘ C
u
k .

Kronheimer and Mrowka constructed differentials between these chain groups out of eight distinct
operators that count flow lines. For critical points x, y such that M̌px, yq is zero-dimensional, let npx, yq
be the modulo two count of points in M̌px, yq.
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The first four operators (with k arbitrary) are denoted by

Boo : Cok Ñ Cok´1,

Bos : Cok Ñ Csk´1,

Buo : Cuk Ñ Cok´1,

Bus : Cuk Ñ Csk´1.

The operator Boo is defined by
Booprxsq “

ÿ

y

npx, yqrys,

where the sum is taken across all interior critical points y of index k ´ 1.
The operators Bos , Buo , Bus are defined similarly.
The last four operators are denoted by

B
s

s : Csk Ñ Csk´1,

B
s

u : Csk Ñ Cuk ,

B
u

s : Cuk Ñ Csk´2,

B
u

u : Cuk Ñ Cuk´1.

To define these operators, consider the case where x and y are boundary critical points. Then, let
M̌Bpx, yq “ M̌px, yq X BB be the manifold of flow lines from x to y that are contained in the boundary.
Note that this coincides with M̌px, yq except possibly in the case where x is boundary-unstable and y is
boundary-stable.

If M̌Bpx, yq is zero-dimensional, let npx, yq be the modulo two count of points in this space. In the
boundary-obstructed case, this is true when the index of y equals the index of x. In the case where x is
boundary-unstable and y is boundary-stable, it is true when the index of y is two less than the index of x.
In the other two cases, it is true when the index of y is one less than the index of x.

With all of these considerations in mind, the operators B
˚

˚ are defined in an analogous way to the oper-
ators B˚˚ , counting boundary flow lines using npx, yq instead of all flow lines using npx, yq.

Note that there are two operators, Bus and B
u

s counting flow lines from a boundary-unstable critical point
and a boundary-stable critical point. This is due to the separate contribution of the space of boundary flow
lines M̌Bpx, yq to the boundary of the compactified space.

We can package these eight operators into differentials for the chain complexes C˚, Č˚, and Ĉ˚:

B “

˜

B
s

s B
u

s

B
s

u B
u

u

¸

,

B̌ “

˜

Boo Buo B
s

u

Bos B
s

s ` B
u
s B

s

u

¸

,

B̂ “

˜

Boo Buo

B
s

uB
o
s B

u

u ` B
s

uB
u
s

¸

.

A direct consequence of our gluing theorem are the following identities for the eight operators.
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Theorem 3.1.8. 1. BooBoo ` Buo B
s

uB
o
s “ 0.

2. BosBoo ` B
s

sB
o
s ` B

u
s B

s

uB
o
s “ 0.

3. BooBuo ` Bus B
u

u ` B
u
o B

s

uB
u
s “ 0.

4. B
u

s ` B
o
sB
u
o ` B

s

sB
u

s ` B
u

sB
u

u ` B
u
s B

s

uB
u
s “ 0.

5. B
2
“ 0.

Proof. Each of 1 to 5 follows directly from the corresponding statement in Theorem 3.1.7 and the fact that a
compact 1-dimensional manifold with boundary has an even number of boundary points.

Applying identities 1-4 from this theorem and a bit of algebra then gives us:

Corollary 3.1.9. B̌2 “ 0 and B̂2 “ 0.

Taking the homologies of these three chain complexes, we obtain three sequences of homology groups:

H
Morse

˚ pBq, qHMorse
˚ pBq, and pHMorse

˚ pBq.

Just like the case of Morse homology without boundary, these three Morse homologies are isomorphic
to three singular homologies associated to the manifold B:

H
Morse

˚ pBq » H˚pBBq,

qHMorse
˚ pBq » H˚pBq,

pHMorse
˚ pBq » H˚pB, BBq.

3.1.3 The Chern-Simons-Dirac functional and its gradient flow

Now we can motivate the construction of Seiberg-Witten-Floer homology by direct analogy with Morse
theory on a manifold with boundary.

Let Y be a closed, oriented Riemannian integral homology 3-sphere. The construction of Seiberg-Witten-
Floer homology in [KM07] works for all closed, oriented Riemannian 3-manifolds but it is a bit simpler for
the case of integral homology 3-spheres and this is the only case we will need.

We can define a spinc structure on a 3-manifold in a similar manner to the definition of 4-manifolds.
The data of a spinc structure on Y is a rank two complex vector bundle S Ñ Y equipped with a Clifford
multiplication

ρ : TY Ñ HompS, Sq.

As before, ρ is a bundle isometry between TY and supSq Ă HompS, Sq.
Given a spinc structure on Y , we can define the configuration space CpY q, the group of gauge transfor-

mations G, and the quotient space BpY q identically to the four-manifold case.
The blown-up configuration space CσpY q is the space of tuples pB, r, ψq such that B is a unitary connec-

tion on the determinant line bundle detpSq, r is a nonnegative real number, and ψ is a unit-length spinor (a
section of S).

Seiberg-Witten-Floer homology is the “infinite-dimensional Morse homology” derived from counting
flow lines of the gradient of a functional on the space BσpY q “ CpY q{G, which is a Hilbert manifold with
boundary.
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The other ingredient to a Morse theory is, of course, the Morse function. This is given by the Chern-
Simons-Dirac functional. Pick a base connection B0 on the determinant line bundle. Then for any other such
connection B, the operator B ´B0 is an imaginary-valued one-form on Y .

Definition 3.1.10. The Chern-Simons-Dirac (CSD) functional

L : CpY q Ñ R

is defined by

LpB,ψq “ ´1

8

ż

Y

pB ´B0q ^ pFB ` FB0
q dvol`

1

2

ż

Y

xDBψ,ψy dvol.

The CSD functional extends to a functional

Lσ : CσpY q Ñ R

by setting
LσpB, r, ψq “ LpB, rψq.

The CSD functional is only guaranteed to be gauge-invariant when the first Chern class of the chosen
spinc structure is torsion, which is true in the setting of this paper (see Lemma 4.1.3 in [KM07] for the
non-torsion case).

The CSD functional is now well-defined as a map Lσ : BσpY q Ñ R. For the sake of concreteness we
will generally treat it as a map out of CσpY q, but it is understood (and important!) that everything proceeds
smoothly upon passing to the quotient space BσpY q. The motivation behind the particular choice of the
CSD functional as a Morse function lies in the special form taken on by its gradient.

It is a routine computation to find

gradLσpB, r, ψq “ p´ ˚ FB ´ 2r2ρ´1pψψ˚q0,´ΛpB, r, ψqr,´DBψ ` ΛpB, r, ψqψq

where ΛpB, r, ψq “ Rexψ,DBψyL2 .
Let γptq be a flow line for the gradient flow of Lσ , i.e. a continuous path of tuples pBptq, rptq, ψptqq P

CσpY q for all t P R satisfying
d

dt
γptq “ gradLσpB, r, ψq.

The path γptq defines an element pA, s, ϕq of a the blown-up configuration space denoted by CσpZq,
where Z “ R ˆ Y is the metric cylinder. To lend some rigor to the work below, we must clarify the spinc

structure on Z. The spinc structure on Z is defined by spinor bundles S`, S´ » S with SZ “ S ‘ S, and
Clifford multiplication ρZ is defined by

ρZpB{Btq “

˜

0 ´1

1 0

¸

,

ρZpwq “

˜

0 ´ρpwq˚

ρpwq 0

¸

.

Let t, y denote the R- and Y -coordinates on the cylinder Z.
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Then the connection A is defined by its covariant derivative:

∇A;Bt “
d

dt
`∇Bptq;Bt

∇A;By “ ∇Bptq;By .

Note that not all connections on Z take this form. We say connections like A are in temporal gauge.
The scalar s is the L2 norm of the path ψptq over the cylinder: ||ψptq||L2pZq. The spinor ϕ is the rescaled

path of spinors ψptq{||ψptq||L2pZq.
Now suppose the path pBptq, rptq, ψptqq is a flow line for the gradient flow of Lσ . Let pA, s, ϕq be the

associated element in Cτ pZq.
The following computation is not too difficult but fundamental, so we will write it out here.
The curvature of A is given by

FA “ dt^
d

dt
B ` FB

and its self-dual projection is then equal to

F`A “
1

2
pFA ` ˚FAq

“
1

2
pdt^

d

dt
B ` FB ` ˚3

d

dt
B ` dt^ ˚3FBq

“
1

2
pdt^ p

d

dt
B ` ˚3FBq ` FB ` ˚3

d

dt
Bq,

where ˚3 denotes the three-dimensional Hodge star.
Now we plug in the gradient flow equation and apply Clifford multiplication to get

1

2
ρZpF

`
A q “ s2pϕϕ˚q0.

It is also immediate that
D`Aϕ “ p

d

dt
`DBqpψptqq “ 0

by the gradient flow equation.
These equations satisfied by pA, s, ϕq are quite familiar to us by now. We have verified one direction of

the following theorem:

Theorem 3.1.11. Gradient flow lines of the CSD functional on BσpY q are in one-to-one correspondence with gauge-
equivalence classes of solutions to the blown-up Seiberg-Witten equations on the cylinder Z.

This theorem provides the jumping off point for understanding the Morse theory of Lσ and constructing
Floer homology. The construction of the moduli spaces of flow lines and the relevant compactness and
gluing theorems all require a large amount of detailed analysis on the Seiberg-Witten equations on the
cylinder. Many of the arguments in the upcoming sections have their basis in this analysis.

Before we move on, the last additional piece of vocabulary that we must present is perturbations. Just
like in the finite dimensional case, there are often transversality issues and our moduli spaces of flow lines
are not necessarily manifolds. To fix this, we perturb the CSD functional.

Let f : CpY q Ñ R be some gauge-invariant smooth function. Then

gradpL` fq “ gradL` q
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for a vector field q “ gradf .
Since the gradient is the main object of interest here, we widen our class of possible perturbations a

little to vector fields q that are the formal gradient of some gauge-invariant function f , i.e. along any path
γ : r0, 1s Ñ CpY q, we have

ż 1

0

xqpγptqq, 9γptqydt “ fpγp1qq ´ fpγp0qq.

A perturbation q then induces a perturbation on the blown-up space CσpY q, denoted by qσ . Through the
correspondence between gradient flow lines and solutions to the Seiberg-Witten equations, this defines a
perturbation q̂σ to the Seiberg-Witten equations on the cylinder Z. These constructions and further details
can be found in Chapter 10 of [KM07].

The following (somewhat vague) theorem will be all that we need. Recall that Y is fixed to be an integral
homology sphere. A perturbation q is said to be nice if qσ vanishes at the reducible configurations.

Furthermore, we say a critical point ras is non-degenerate if the Hessian of the Chern-Simons-Dirac func-
tional at ras is surjective when considered as a map on tangent spaces.

Theorem 3.1.12. There is a Banach space P of nice perturbations and a residual subset U Ă P such that all of the
critical points are non-degenerate and all of the spaces of flow lines for the Chern-Simons-Dirac functional perturbed
by any element of U are smooth, finite-dimensional manifolds of the expected dimension.

There is some missing subtlety with regards to what the “expected dimension” is and so on, but we may
regard this as an analogue of Theorem 3.1.1.

3.1.4 Floer homology, the exact triangle, and cobordism maps

Assuming all goes well, we can define three Floer chain complexes by counting flow lines and obtain three
Floer homology groups for our 3-manifold Y :

HM ˚pY q, }HM ˚pY q, and yHM ˚pY q.

These are pronounced “HM-bar”, “HM-to”, and “HM-from” respectively.
These three Floer homologies fit into an exact triangle:

}HM ˚pY q

HM ˚pY q yHM ˚pY q

j˚i˚

p˚

The image of the map j˚ is denoted by HM ˚pY q, known as the reduced Floer homology of Y .
The other important property of Seiberg-Witten-Floer homology is that it is functorial with respect to

cobordisms. Let Y0 and Y1 be two closed, oriented Riemannian manifolds and W an cobordism with ori-
ented boundary ´Y0 Y Y1. Then W induces maps

HM ˚pW q : HM ˚pY0q Ñ HM ˚pY1q,

}HM ˚pW q : }HM ˚pY0q Ñ }HM ˚pY1q,

yHM ˚pW q : yHM ˚pY0q Ñ yHM ˚pY1q.
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Furthermore, if Y0, Y1, Y2 are three 3-manifolds with cobordisms W0 : Y0 Ñ Y1, W1 : Y1 Ñ Y2 then the
composite cobordism W1 ˝W0 : Y0 Ñ Y2 satisfies

HM ˚pW1 ˝W0q “ HM ˚pW1q ˝HM ˚pW0q

and so on for the other two types of maps.
The cobordism maps are in fact defined on the chain level. They arise from counting solutions to the

Seiberg-Witten equations on the non-compact manifold

W8 “ p´8, 0s ˆ Y0q YW Y pr0,8q ˆ Y1q

given by attaching tubular ends to the boundary of W , depicted in the figure below.
A solution to the Seiberg-Witten equations on W˚ when restricted to the tubular end p´8, 0s ˆ Y0 can

be regarded as a half flow-line for the CSD functional on BσpY0q. The same is true for the restriction to the
tubular end r0,8q ˆ Y1.

For a critical point rα0s P BpY0q and a critical point rα1s P BpY1q, we can define the “moduli spaces of
flow lines” from rα0s to rα1s to be the solutions to the Seiberg-Witten equations on W˚ whose restrictions
to p´8, 0s ˆ Y0 and r0,8q ˆ Y1 tend to rα0s and rα1s respectively.

Figure 3.6: The manifold W˚ with a Seiberg-Witten trajectory (blue) from ra0s to ra1s

For example, if we denote Co˚pYiq to be the abelian group generated by formal sums of the irreducible
critical points in BσpYiq for i “ 0, 1, then the cobordism W defines a map

mo
o : Co˚ Ñ Co˚.

The cobordism maps also commute with the exact triangles on Y0 and Y1. The relevant diagram is:

. . . HM ˚pY0q }HM ˚pY0q yHM ˚pY0q HM ˚pY0q . . .

. . . HM ˚pY1q }HM ˚pY1q yHM ˚pY1q HM ˚pY1q . . .

p˚ i˚

HM˚pW q

j˚

~HM˚pW q

p˚

zHM˚pW q

i˚

HM˚pW q

p˚ i˚ j˚ p˚ i˚

As a consequence, we find that W induces a map

HM ˚pW q : HM ˚pY0q Ñ HM ˚pY1q.

One may notice that everything defined here has a “star” subscript. This is to serve as an indication that
all of these objects are graded. However, the grading is more complex than in the case of Morse homology.
In that setting, we could take the index of a critical point to be the number of negative eigenvalues of the
Hessian of the Morse function at that point. However, the Hessian of the CSD functional has infinitely
many positive and negative eigenvalues, so this approach does not work as is.
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3.1.5 The h-invariant

Before defining the h-invariant of Y , we will discuss the reducible critical points of Y and their gradings.
Fix a nice perturbation q as in Theorem 3.1.12.

Lemma 3.1.13. There is exactly one reducible critical point rθs P CpY q of the Chern-Simons-Dirac functional with
perturbation q.

Proof. Since q is nice, it suffices to show this holds true in the absence of a perturbation.
By our computation of the gradient, a reducible configuration pB, 0q is a critical point if and only if the

connection B is flat. Therefore, it suffices to show any two flat unitary connections on the determinant line
bundle on Y are gauge-equivalent.

Let B and B1 be two such flat connections. The difference b “ B ´ B1 is an imaginary-valued one-form
on Y . Since the connections are flat, it follows that db “ FB ´ FB1 “ 0, so b is closed. However, since
H1pY ;Zq “ 0, it is also exact and so b “ dξ for some imaginary-valued smooth function ξ.

Apply the gauge transformation u “ eξ{2 to B to get upBq “ B ´ dξ “ B1 as desired.

Expand rθs “ rpB0, 0qs. Let q1 denote the spinorial part of the perturbation q over CpY q. By examining
the blown-up gradient flow, we obtain the following corollary:

Corollary 3.1.14. The reducible critical points in BσpY q of the Chern-Simons-Dirac functional with perturbation
qσ are the equivalence classes represented by tuples of the form pB0, 0, ψq. Here B0 is the connection part of a
representative of rθs and ψ is an eigenvector of the operator φ ÞÑ DBφ`DpB0,0qq

1p0, φq.

The operator in question is a small perturbation of the self-adjoint Dirac operatorDB , so it has a discrete,
real spectrum with trivial kernel. We can label the eigenvalues as the sequence tλiuiPZ. We require λi ą 0 if
i ě 0, λi ă 0 if i ă 0, and λi`1 ą λi for every i P Z.

The critical point in BσpY q corresponding to the eigenvalue λi will be labeled henceforth as rais. This
construction also gives the most direct classification of boundary critical points. The critical points rais for
i ě 0 are the boundary-stable critical points and the critical points rais for i ă 0 are the boundary-unstable
critical points.

As mentioned at the end of the previous section, the critical points admit a grading. This grading takes
values in m

n ` Z for some rational number m
n . The Q-grading of a critical point rbs is written as grQprbsq.

The only necessary information about the Q-grading that will be used in the following exposition is
the grading of the reducible critical points. Pick any spin manifold Z bounding Y and extending its spin
structure. Then, attach a cylindrical end r0,8qˆ Y to Z to create a compact spinc manifold denoted by Z8.
Letting D`pZ8q be the Dirac operator, the number

npY q “ indD`pZ8q ´ signpZq{8

can be shown to be independent of the choice of Z by an excision argument. Note that npY q depends on
the spin structure on Y , although this notation has been omitted.

Lemma 3.1.15. The critical points rais for i ě 0 satisfy grQpraisq “ ´2npY q ` 2i.

Proof. This follows from unrolling Definition 28.3.1. of [KM07].

There is an additional grading taking values in Z{2, denoted by grZ{2prbsq. For i P Z, grZ{2praisq “ 0.
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Both gradings interact as one may expect with the exact triangle and cobordism maps. The maps i˚
and j˚ in the exact triangle are degree zero maps, while the map p˚ has degree ´1. The cobordism maps
preserve gradings.

The h-invariant hpY q is a rational number derived from the Q-gradings of the reducible critical points. It
was first introduced by Frøyshov (and so is often called the “Frøyshov invariant”) in [Frø10] for a possibly
different version of Seiberg-Witten-Floer homology, and adapted to Kronheimer and Mrowka’s version in
Chapter 39 of [KM07].

Recall one of the component maps of the exact triangle:

i˚ : HM ˚pY q Ñ }HM ˚pY q.

The boundary-stable critical points lie within the Floer chain complexes for both of these groups. There-
fore, the following is well-defined.

Definition 3.1.16. The h-invariant hpY q is the integer such that ´2hpY q is the lowest grading of a nonzero
class in impi˚q Ď }HM ˚pY q represented by a boundary-stable critical point.

Accompanying this definition, Frøyshov also showed in his paper that, for a 4-manifold X satisfy-
ing (A1) and (A2), any embedded integral homology three-sphere generating H3pX;Zq has the same h-
invariant.

We are now, at long last, armed with all the proper definitions and vocabulary to properly understand
and discuss the splitting formula for λSW pXq.

3.2 The splitting formula and its proof

Let X be a manifold satisfying assumptions (A1) and (A2), Y an embedded integral homology 3-sphere
generating H3pX;Zq, and W the cobordism from Y to Y given by cutting open X along Y . As discussed
before, W induces a map on the reduced Floer homology of Y :

HM pW q˚ : HM ˚pY q Ñ HM ˚pY q.

Furthermore, the map HM pW q preserves the mod 2 grading on HM ˚pY q. Therefore, there is a well-
defined Lefschetz number with respect to this grading, defined as

LefpHM pW q˚q “
ÿ

iPZ{2
p´1qiTrpHM pW qi : HM ipY q bQÑ HM ipY q bQq.

Denote by hpY q the h-invariant of Y , discussed at the end of the last section. The splitting formula is
stated as follows.

Theorem 3.2.1. λSW pXq ” LefpHM pW q˚q ` hpY q modulo 2.

This splitting formula is a concrete realization of the vague idea mentioned at the start of the chapter.
The invariant λSW pXq decomposes into an invariant depending on the cobordism W (LefpHM pW q˚q) and
one depending on the integral homology 3-sphere Y (the h-invariant).
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Furthermore, we must mention that this formula is the modulo 2 reduction of the integral splitting
formula presented in [LRS17]. Owing to technical reasons regarding orientations, we will only describe the
proof of this version.

The first part of the proof of Theorem 3.2.1 relies on a couple of natural exact sequences in Seiberg-
Witten-Floer homology, coupled with the fact that Lefschetz numbers are additive on such exact sequences.

Lemma 3.2.2. Let C˚, D˚, and E˚ be chain complexes of vector spaces such that there is a short exact sequence

0 Ñ C˚ Ñ D˚ Ñ E˚ Ñ 0.

Let
0 C˚ D˚ E˚ 0

0 C˚ D˚ E˚ 0

TC TD TE

be an endomorphism of this short exact sequence.
Then the Lefschetz numbers of the three vertical maps satisfy the identity

LefpTDq “ LefpTCq ` LefpTEq.

Proof. As the chain complexes C˚, D˚, and E˚ fit in a short exact sequence, there is a corresponding long
exact sequence of their homology groups, depicted compactly as an exact triangle of graded objects where
the map δ has degree ´1 and the others have degree 0:

H˚pD˚q

H˚pC˚q H˚pE˚q

pi

δ

This long exact sequence splits into short exact sequences of the form

0 Ñ cokerpiq Ñ H˚pD˚q Ñ imppq Ñ 0.

By this, the additivity of Lefschetz numbers is reduced to the assertion that, for any short exact sequence
of finite-dimensional vector spaces

0 Ñ U Ñ V ÑW Ñ 0

and endomorphism
0 U V W 0

0 U V W 0

TU TV TW
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the traces of the vertical maps satisfy the identity

TrpTV q “ TrpTU q ‘ TrpTW q.

This latter identity is simple linear algebra. One proof, although rather non-canonical, is to use the fact
that short exact sequences of finite-dimensional vector spaces split.

Fix a perturbation q for the Seiberg-Witten equations on Y from the residual subspace U of the Banach
space P as described in Theorem 3.1.12. Given this perturbation, Y admits exactly one reducible critical
point rθs in the blown-down space, and furthermore all of the critical points are non-degenerate and all of
the relevant spaces of flow lines are smooth, finite-dimensional manifolds of the expected dimension.

The first short exact sequence that we will make use of is rather simple. Let Cs˚ be the vector space of
(gauge-equivalence classes of) boundary-stable critical points, Co˚ the vector space of interior critical points,
and Č˚ “ Cs˚ ‘ C

o
˚. Then, there is a split exact sequence

0 Ñ Cs˚ Ñ Č˚ Ñ Co˚ Ñ 0.

In order to apply Lemma 3.2.2 to some endomorphism, the spaces Cs˚ and Co˚ must have finite dimen-
sion. This is clearly not true for the former, but it is for the latter.

Lemma 3.2.3. There are finitely many gauge-equivalence classes of interior critical points on Y .

Proof. Assume for the moment that the perturbation q is equal to zero. Since we have not discussed the
analytic properties of the perturbations, we will only prove this lemma in the un-perturbed cse and take it
for granted that the proof extends to the perturbed case. For details, see Chapter 10 of [KM07].

A blown-down configuration pB,ψq with ψ ‰ 0 is a critical point of the perturbed Chern-Simons-Dirac
functional if and only if it satisfies the equations

˚FB ´ ρ
´1pψ b ψ˚q0 “ 0

DBψ “ 0

The standard compactness theorem works in this case (see [Mor95]) as well, so the space of gauge-
equivalence classes of solutions is compact. The linearized operator is Fredholm of index zero, so it follows
that the space of solutions is a finite set of points, which implies there are finitely many interior critical
points.

The space Cs˚ can be made finite by truncation. By the previous lemma, there exists N ě 0 sufficiently
large such that the Q-grading of any interior critical point is less than or equal to N .

Denote by Csn the space of boundary-stable critical points with Q-grading n, with a similar definition
for Con and Čn. Then

À

nďN C
o
n “ Co˚ and the sequence

0 Ñ
à

nďN

Csn Ñ
à

nďN

Čn Ñ Co˚ Ñ 0

is a short exact sequence of finite-dimensional vector spaces.
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Setting N to be equal to´2npY q`2k for some integer k, it follows that
À

nďN C
s
n is a finite-dimensional

vector space of dimension k ` 1.
As discussed in the previous section, the cobordism W induces a map

mo
o : Co˚ Ñ Co˚

preserving the mod-2 grading.
It also induces a map

ms
s :

à

nďN

Csn Ñ
à

mďN

Csn

and a map
m̌ :

à

nďN

Čn Ñ
à

nďN

Čn

such that the diagram

0
À

nďN C
s
n

À

nďN Čn Co˚ 0

0
À

nďN C
s
n

À

nďN Čn Co˚ 0

mss m̌ moo

commutes.
The fact that the cobordism map induced by W preserves the mod-2 grading is, of course not trivial.

It is a consequence of Proposition 25.4.3 of [KM07], which specializes in the situation of this thesis to the
statement that W preserves the mod-2 grading if and only if the quantity

ιpW q “
1

2
pχpW q ` signpW qq

is even, where χ denotes the Euler characteristic.
However, both the Euler characteristic and the signature of W vanish, which implies that W preserves

the mod-2 grading.
The fact that this diagram commutes is also not at all obvious, but it is a matter of reading off the

definition of m̌ from Definition 25.3.3 of [KM07] and using the fact that Y is a homology 3-sphere to show
that the appropriate differentials or cobordism chain maps vanish.

Taking Lefschetz numbers with respect to the mod-2 grading and applying Lemma 3.2.2, it follows that

Lefpm̌q “ Lefpmo
oq ` Lefpms

sq.

Lemma 3.2.4. The map ms
s is the identity map. Since the boundary-stable critical points all have even grading, this

in turn implies that

Lefpms
sq “ dimp

à

nďN

Csnq “
N ` 2npY q

{
2` 1.

Proof. This is proven in Proposition 39.1.2 of [KM07].
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It follows that
Lefpm̌q “ Lefpmo

oq ` Lefpms
sq.

The definition of a “Lefschetz number” specializes naturally to the definition given before the statement
of Theorem 3.2.1 for a graded endomorphism of a Z{2-graded vector space. This can be seen by considering
the vector space as a chain complex with trivial differentials. In particular, Lemma 3.2.2 still holds for short
exact sequences of Z{2-graded vector spaces.

There is a short exact sequence

0 Ñ impi˚q
i˚
ÝÑ }HM ˚pY q Ñ HM ˚pY q Ñ 0.

Considered with real coefficients, these are vector spaces graded by either the Q-grading or the mod-2
grading. Define }HM npY q to be the subspace of linear combinations of homology classes represented by
critical points of Q-grading n, with impinq and HM npY q defined identically. Then, we obtain another short
exact sequence of finite-dimensional, Z{2-graded vector spaces as before:

0 Ñ
à

nďN

impinq
i˚
ÝÑ

à

nďN

}HM npY q Ñ
à

nďN

HM npY q Ñ 0.

For sufficiently large n, the map in : HM npY q Ñ }HM npY q is surjective.
This is a consequence of the discussion in Section 39.1 of [KM07].
The differentials of the complex C˚ actually vanish when Y is a homology three-sphere. Therefore, it is

identified with the graded vector space RrU,U´1s where 1 P RrU,U´1s has degree zero and multiplication
by U is a map of degree ´2. It is a graded module over the ring S “ RrrU ss of formal power series in U .

Then kerpi˚q is identified with a proper S-submodule of RrU,U´1s. These submodules are exactly of
the form UhS for some h P Z, which is the submodule of RrU,U´1s consisting of the closure of all elements
with grading higher than ´2h. It follows that the image of i˚ has its degree bounded above, from which it
can be deduced that in is surjective for large n.

Pick the number N from before to be large enough so that this happens, resulting in the identification

à

nďN

HM npY q “ HM ˚pY q.

The cobordism maps commute with the exact triangle, so they commute with the short exact sequence:

0
À

nďN impinq
À

nďN
}HM npY q HM ˚pY q 0

0
À

nďN impinq
À

nďN
}HM npY q HM ˚pY q 0

i˚

~HM˚pW q
~HM˚pW q HM˚pW q

i˚

Applying Lemma 3.2.2, it follows that

Lefp}HM ˚pW qq “ Lefpimpi˚qq ` LefpHM ˚pW qq

where “Lefpimpi˚qq” is interpreted to be the Lefschetz number of }HM ˚pW q restricted to the truncated image
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of i˚.
By definition,

Lefpm̌q “ Lefp}HM ˚pW qq.

By another application of Proposition 39.1.2 of [KM07], the cobordism map on HM ˚pY q is the identity
map. Since the cobordism maps commute with the exact triangle, it follows that it is the identity map on
impi˚q as well.

Finally, impi˚q by definition consists of all of the boundary unstable critical points with grading greater
than or equal to ´2hpY q. Therefore, it follows that Lefpimpi˚qq “

N`2hpY q
2 ` 1.

Combining the two identities shows that

N ` 2npY q

2
` 1` Lefpmo

oq “
N ` 2hpY q

2
` 1` LefpHM ˚pW qq

so
npY q ` Lefpmo

oq “ hpY q ` LefpHM ˚pW qq.

To show Theorem 3.2.1, it remains to show that λSW pXq ” npY q ` Lefpmo
oqmodulo 2.

Given a regular pair pg, βq, λSW pXq decomposes as

λSW pXq “ #MpX, g, βq ´ indD`pZ`, g, βq ` signpZq{8.

Recall
npY q “ indD`pZ8q ´ signpZq{8.

This is rather similar to the correction term in λSW pXq. It would certainly prove the theorem if the
equalities

indD`pZ`, g, βq “ indCD
`pZ8q

and
#MpX, g, βq “ ´Lefpmo

oq

held modulo 2.
This is not a priori true, but will work if we “stretch the neck” of X around Y .
Suppose the metric g takes the form dt2 ` h for some metric h on Y in a bicollar neighborhood r´ε, εs ˆ

Y Ă X .
This assumption gives a “neck” around Y that can be stretched.
Given this, define for any R ą 0 the manifold XR constructed by cutting out r´ε, εs ˆ Y and gluing in

the cylinder r´R,RsˆY . The metric g on Xzpr´ε, εsˆY q glues together with the cylindrical metric dt2`h
on r´R,Rs ˆ Y to form a metric gR. Similarly, define WR to be the cobordism from Y to itself obtained by
cutting open XR along t0u ˆ Y . Equivalently, WR is equal to the gluing

r´R, 0s ˆ Y ! W ! r0, Rs ˆ Y.

Set ZR to be the gluing
Z ! WR,0 ! WR,1 ! . . .

with WR,i “WR for every i.
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Metrics and spin structures are induced on WR and ZR from gR in the expected way.
The manifold XR is clearly diffeomorphic to X , so it follows that λSW pXq “ λSW pXRq for any R.
Denote by W8 the manifold obtained by attaching two tubular ends r0,8q ˆ Y to the boundary com-

ponents of Y , oriented in the expected manner. Since the metric g is cylindrical near Y , it follows that the
metric on W is cylindrical near the boundary, from which it follows that there is a natural metric on W8 as
well.

As R Ñ 8, the manifold XR is “asymptotic” to W8. This can be seen as another motivation for the
splitting formula. The solutions to the Seiberg-Witten equations on XR should (and will, given some care)
for large R behave like solutions to the Seiberg-Witten equations on W8 that are asymptotic to the same
critical point on both ends. If the critical point is not reducible, then the appropriately oriented count of
such solutions on W8 is exactly the Lefschetz number Lefpmo

oq.
Similarly, as R Ñ 8, the end-periodic manifold ZR is “asymptotic” to the manifold Z8. In this case,

one would expect the indices of the relevant Dirac operators to agree for sufficiently large R. Putting this
together with the above would yield the splitting formula for λSW pXRq for sufficiently large R.

Making this intuition precise, however, requires a host of technical assumptions on the metrics and
perturbations used.

First, we will require that the metric g satisfies two additional assumptions:

1. The Dirac operator D`pY qwith respect to the metric h has no kernel.

2. The Dirac operator D`pW8qwith respect to the metric induced by g is invertible.

The existence of generic metrics satisfying both of these properties in addition to the first assumption is
shown in Section 10 of [LRS17].

Next, observe that there are two distinct ways that one can perturb the Seiberg-Witten equations on the
manifold XR. The first way is the one described in the last chapter, perturbing the self-dual part of the
curvature of a solution by d`β for an imaginary-valued one-form β.

The second way is a perturbation in the “Floer homology” style described in the previous subsection.
Identify a collar neighborhood of the boundary of the cobordism W with p´ε, 0q ˆ pY Y Y q. Then, take two
nice perturbations q and p0 for the Chern-Simons-Dirac functional as in Theorem 3.1.12.

As mentioned briefly before the introduction of Theorem 3.1.12, these induce perturbations q̂ and p̂0 for
the Seiberg-Witten equations on the collar neighborhood.

Now let β be a smooth function on W that is equal to 1 on the boundary and vanishes outside of the
collar neighborhood, and let β0 be a smooth function on W that has compact support inside the collar
neighborhood. Then, one can form the perturbation

p̂ “ βq̂` β0p̂0.

By definition, p̂ can be considered a perturbation of the Seiberg-Witten equations on W that vanishes
outside of the collar neighborhood.

Now the manifoldXR is equal to the gluing ofW with the cylinder r´R,RsˆY . Therefore, one can form
a perturbation to the Seiberg-Witten equations on XR by gluing p̂ with the perturbation q̂ on r´R,Rs ˆ Y .
This perturbation is denoted by pR.

For sufficiently small perturbations, the moduli space of solutions

MpXR, gR, p̂Rq
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to the blown-up Seiberg-Witten equations is a compact, finite-dimensional manifold. The argument for this
is outlined in Section 9 of [MRS11].

Recall thatZ Ă BσpXRq is the space of all configurations pA, s, ϕq such thatD`Aϕ “ 0. Then, the solutions
to the unperturbed Seiberg-Witten equations are the zero set of the operator χ : Z Ñ Ω2

`pXR; iRq sending
pA, s, ϕq to F`A ´ s

2ρ´1pϕb ϕ˚q0.
This can be phrased differently. Let V be the trivial bundle over Z with fiber Ω2

`pXR; iRq ‘ L2
kpXR;S´q

at every point. Then χ paired with the zero section on the second summand in the fiber is a section of V . We
may perturb χ by some small section γ such that χ is transverse to the zero section, so the resulting moduli
space

MpXR, gR, γq “ pχ` γq
´1p0q

is a manifold.
Both the perturbations β and pR are special cases of these types of perturbations. In particular, the

former is simply a constant section of V . If both are sufficiently small, however, then it is shown in [MRS11]
that they produce the same spaces of solutions.

Lemma 3.2.5. ([MRS11], Lemma 9.4) For a generic metric gR and sufficiently small generic perturbations β and
p̂R, the moduli spacesMpXR, gR, βq andMpXR, gR, p̂Rq are in bijective correspondence.

Lemma 9.4 of [MRS11] only considers the case where a perturbation γ takes values of zero in its spinorial
part, but the exact same proof works for the more general case under consideration.

The other point that must be addressed is the index-theoretic term in the definition of λSW pXRq. We will
only be able to calculate the index of the unperturbed Dirac operator D`pZRq, but the index-theoretic term
in the invariant λSW pXRq is the index of a perturbed end-periodic Dirac operator. Luckily, it is well-known
that the Fredholm index is stable under bounded perturbations of small operator norm (see Theorem 5.17
in Chapter IV of [Kat66] for a general statement).

Therefore, if the metric is chosen properly such that this operator is Fredholm, which we are assuming
to be the case, then D`pZRq ` ρpβqwill be Fredholm with index equal to that of D`pZRq.

This allows us to re-define the invariant λSW pXRq in the desired manner. First, pick a regular pair
pgR, βq such that gR satisfies all the required assumptions and β is sufficiently small. Then one can write

λSW pXRq “ #MpXR, gR, βq ´ indD`pZR, gR, βq ` signpZq{8.

However, because β is small, we have the equalities

#MpXR, gR, βq “ #MpXR, gR, p̂Rq

for small p̂R and
indD`pZR, gR, βq “ indD`pZR, gRq.

It follows that
λSW pXRq “ #MpXR, gR, pRq ´ indD`pZR, gRq ` signpZq{8.

Now, the proof outline for the splitting formula given above rests on more rigorous footing.
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3.3 The index calculation

In this section, we will show the following theorem. Note that the proof is rather technical, so the reader
may wish to skip this section on a first reading.

Theorem 3.3.1. For sufficiently large R ą 0,

indD`pZRq “ indD`pZ8q.

There are two ways that this index is computed in [LRS17]. The first method, which is the one we
will discuss, is to repeatedly apply a lemma that allows one to add and remove “redundant” parts of a
Fredholm operator while preserving its index. The second method uses the index theorem for end-periodic
operators derived in [cite this paper], which is analogous to the work of [APS75] in that it expresses the
indices of these operators as a topological term corrected by an “end-periodic eta invariant”. It is shown
that, as RÑ8, the end-periodic eta invariant approaches the standard Atiyah-Patodi-Singer eta invariant.
Since both quantities are integers, it follows that they become equal for sufficiently large R.

The central lemma of this section is the following.

Lemma 3.3.2. LetH1,H2, andH3 be Hilbert spaces.
Let F : H1 Ñ H2 and G : H1 Ñ H3 be operators such that G is surjective and the operator F ‘ G : H1 Ñ

H2 ‘H3 is Fredholm.
Then the restriction F |kerG : kerGÑ H2 is Fredholm, and indF “ indF ‘G.

Proof. Write rF “ F |kerG.
First, we can identify the kernel of rF with that of F ‘G. It is clear that any v P ker rF lies in kerpF ‘Gq.

On the other hand, if v P kerpF ‘Gq, that implies both F pvq and Gpvq “ 0, so v P ker rF as desired.
Next, we can identify the kernel of the adjoint rF˚ with that of pF ‘Gq˚. If rF˚pvq “ 0, then it is certainly

the case that
pF ‘Gq˚pv, 0q “ F˚pv, 0q “ rF˚pvq “ 0

.
On the other hand, if pF ‘Gq˚pv, wq “ 0, this is equivalent to rF˚pvq `G˚p0, wq “ 0. Since rF˚pvq lies in

kerpGq, it is orthogonal to G˚p0, wq. It follows that both vectors vanish. However, since G is surjective, G˚

is injective, and so w “ 0. This is sufficient to identify the kernels of the adjoint operators.

Essentially, this lemma states that one can remove the “surjective” part of any Fredholm operator while
retaining the same index.

The proof of Theorem 3.3.1 will follow from repeated application of this lemma, but also depends heav-
ily on the assumptions made on the metric that were described in the last section. It is necessary to have a
good understanding of the various implications of these assumptions.

3.3.1 The Dirac operator and APS boundary conditions

Consider the half-cylinder Rď0 ˆ Y with the metric dt2 ` h. The spinor bundle on the half-cylinder can be
identified with the direct sum of two copies of the spinor bundle S Ñ Y , pulled back by the projection onto
the Y factor. Therefore, a spinor on the half-cylinder can be regarded as a time-dependent spinor on Y over
the time interval r0,8q.
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Under this identification, the Dirac operator D`pRď0 ˆ Y q takes the form of the differential operator
d
dt `DpY q. For a path of spinors ϕptq on Rď0 ˆ Y , one writes

D`pRď0 ˆ Y qpϕptqq “
dϕ

dt
ptq `DpY qpϕptqq.

Suppose we are trying to solve the problem

D`pRď0 ˆ Y qpϕptqq “ ψptq

for smooth, compactly supported spinors ϕptq, ψptq.
Recall that the operator DpY q has no kernel. Furthermore, it is self-adjoint, so it has a discrete real spec-

trum SpecpDpY qq and the space of spinors on Y admits anL2-orthonormal basis of eigenvectors tϕλuλPSpecpDpY qq.
The eigenvector ϕλ has eigenvalue λ P SpecpDpY qq.

It follows that there are tuples of smooth functions tfλu, tgλu on the half-cylinder such that

ϕptq “
ÿ

λPSpecpDpY qq

fλptqϕλ

and
ψptq “

ÿ

λPSpecpDpY qq

gλptqϕλ.

Expanding out the Dirac operator, it follows that

D`pRď0 ˆ Y qpϕptqq “
ÿ

λ

D`pRď0 ˆ Y qpfλptqϕλq

“
ÿ

λ

p
d

dt
`DpY qqpfλptqϕλq

“
ÿ

λ

p
dfλ
dt
ptq ` λfλptqqϕλ.

Equating the coefficients of ϕλ on both sides, this equation reduces to a collection of ODEs of the form

dfλ
dt
ptq ` λfλptq “ gλptq.

If λ ą 0, this can be solved explicitly by the reader’s favorite method:

fλptq “

ż t

´8

eλps´tqgλpsqds.

However, if λ ď 0, this function may blow up as t approaches zero. Instead, one defines

fλptq “ ´

ż 0

t

eλps´tqgλpsqds.

Note that this solution by default fixes the value fλp0q “ 0 for any λ ď 0. In other words, the spinor
ϕptq satisfies a spectral boundary condition, which in this case means its restriction to the boundary of the
half-cylinder must lie in the span of the negative eigenspaces of DpY q.
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Therefore, one sees that when working with these types of problems involving differential operators
on manifolds with boundary, it is necessary to fix boundary conditions to make the problem well-posed.
Without boundary conditions on its domain, the Dirac operator on the half-cylinder does not admit a left
inverse.

The work of Atiyah-Patodi-Singer in [APS75] extended this type of work to (and beyond) the more
general situation of the Dirac operator on a Riemannian manifold with a cylindrical neighborhood around
its boundary. In our case, the manifold for which we would like to understand better the Dirac operator is
the cobordismW , with oriented boundary Y YY . The Dirac operatorD`pW q is not a priori Fredholm: it has
a finite-dimensional cokernel, but an infinite-dimensional kernel. This can be regarded as a generalization
of the failure of the Dirac operator of the half-cylinder to admit a left inverse without boundary conditions.

Therefore, one must impose boundary conditions. Identify a neighborhood of the boundary of W with
the cylinder p´ε, 0s ˆ pY Y Y q. As is convention, this identification takes t0u ˆ pY Y Y q to the boundary of
W . The Dirac operator on Y is given by DpY q “ ´DpY q.

In the toy example above, we examined the Dirac operator between spaces of smooth sections. However,
in our situation, the Dirac operator acts betweenL2 Hilbert spaces of sections. In this case, sections still have
“boundary values”, but some Sobolev regularity is lost.

Theorem 3.3.3. ([KM07], Theorem 17.1.1) There is a continuous, surjective restriction map

L2
1pW ;S`q Ñ L2

1{2pY Y Y ;Sq “ L2
1{2pY ;Sq ‘ L2

1{2pY ;Sq.

It is a clear corollary that restriction to either of the boundary components is also continuous and surjec-
tive. For a spinor ϕ P L2

1pW ;S`q, its restriction to Y or Y will be denoted by rW´ pϕq and rW` pϕq respectively.
Since the Dirac operator DpY q is self-adjoint and has no kernel, there is an orthogonal splitting

L2
1{2pY ;Sq “ K`pY q ‘K´pY q

where K˘pY q denote the spans of the positive and negative eigenspaces respectively.
Write Π˘ : L2

1{2pY ;Sq Ñ K˘pY q for the orthogonal projections onto these eigenspaces. These act as
projections on the space L2

1{2pY ;Sq since it is canonically identified with L2
1{2pY ;Sq. However, the Dirac op-

erator switches sign when the orientation of Y is reversed, so K`pY q is the span of the negative eigenspaces
of DpY q and vice versa.

It is with this, along with the previous discussion in mind that we introduce the Dirac operator with
boundary conditions:

pD`pW q,Π` ˝ r
W
´ ,Π´ ˝ r

W
` q : L2

1pW ;S`q Ñ L2pW ;S´q ‘K`pY q ‘K´pY q.

This is an example of the type of operator that is discussed in the first part of [APS75]. As such, the
theoretical results in this paper apply here, and the following theorem is a direct consequence of Proposition
3.11 in the first paper of [APS75], as well as the fact that DpY q has no kernel.

Theorem 3.3.4. The kernel and cokernel of the Dirac operator with boundary conditions are isomorphic to the kernel
and cokernel of D`pW8q. In other words, the operator pD`pW q,Π` ˝ rW´ ,Π´ ˝ rW` q is an isomorphism.

It will also be useful to understand the Dirac operator on a finite cylinder C “ r´R,Rs ˆ Y . Write Y for
the slice t´Ru ˆ Y and Y for tRu ˆ Y . Here the Sobolev restriction maps are denoted by rC˘ , and are still
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surjective.
In this situation, one can solve explicitly for the kernel of D`pCq using the method above. If ϕ P

kerD`pCq, then one may decomposeϕptq as a time-dependent linear combination of eigenvectors
ř

λ fλptqϕλ.
Then the equation D`pCqpϕq “ 0 is equivalent to a system of ODEs

p
d

dt
` λqfλptq “ 0.

Choose for each fλ an initial value cλ “ fλp0q. Then, the ODE has the unique solution

fλptq “ cλe
´tλ

and so
ϕptq “

ÿ

λ

cλe
´tλϕλ.

This derivation implies the following theorem.

Theorem 3.3.5. The Dirac operator D`pCq : L2
1pC;S`q Ñ L2pC;S´q is surjective. Furthermore, let

pD`pCq,Π` ˝ r
C
´ ,Π´ ˝ r

C
`q : L2

1pC;S`q Ñ L2pC;S´q ‘K`pY q ‘K´pY q

be the Dirac operator with boundary conditions on C. Then, the restriction

pΠ` ˝ r
C
´ ,Π´ ˝ r

C
`q : kerD`pCq Ñ K`pY q ‘K´pY q

is an isomorphism.

Proof. The kernel and cokernel of the Dirac operator with boundary conditions are identified with that of
the Dirac operator on the cylinder Rˆ Y , again using Proposition 3.11 of the first paper of [APS75] and the
fact that DpY q has no kernel. This operator is certainly surjective, as our construction of a right inverse for
the operator on the half-cylinder at the beginning of the section works in this case as well.

This implies the first assertion, and the fact that pΠ` ˝ rC´ ,Π´ ˝ rC`q is surjective with closed range.
The second assertion then follows from our explicit construction of the kernel of D`pCq given sets of

initial values tcλu. As long at least one of the cλ is nonzero, it follows that the boundary values ϕp´Rq and
ϕpRq are nonzero, which shows that the map pΠ` ˝ rC´ ,Π´ ˝ rC`q is injective.

3.3.2 Proof of the main theorem

We are now ready to prove the main theorem. The presentation here is almost verbatim the presentation
given in [LRS17], with some changes in notation and explanations given at various steps in the process. The
calculation will require some careful book-keeping of the different operators involved, as well as technical
input from the results of the previous subsection. Let Wi denote the cobordism W for every i ą 0. Let Ci
denote the cylinder r´R, 0s ˆ Y for i “ 0 and r´R,Rs ˆ Y for i ą 0.

The manifold XR is by definition the gluing W Y r´R,Rs ˆ Y .
Therefore, gluing along boundary components, one may write

ZR “ Z !Y0,`
C0 !Y1,´

W1 !Y1,`
C1 !Y2,´

W2 !Y2,`
. . . .
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Here, the notation is set such that Yi,´ and Yi,` denote the boundary components corresponding to Y
and Y in Wi for all i ě 1. The manifold Y0,` is the boundary of Z, and the cylinders Ci have boundary
Yi,` and Yi`1,´ for all i ě 0. For any of the Wi, write rW˘ for the restrictions to Yi,˘. For the Ci, write rC´
for the restriction to the “left” boundary component Yi,` and rC` for the restriction to the “right” boundary
component Yi`1,´.

The restriction from Z to its boundary is similarly denoted by rZ` : L2
1pZ;S`q Ñ L2

1{2pY0,`;Sq.
The Dirac operator D`pZRq is an operator from L2

1pZR;S`q to L2pZR;S´q.
The latter space decomposes into a direct sum of the spaces of spinors over its components:

L2pZR;S´q » L2pZ;S´q ‘ p
à

iě0

L2pCi;S
´qq ‘ p

à

jě1

L2pWj ;S
´qq.

The former space decomposes into tuples of spinors on each of the components, but these spinors are
now required to agree along the manifolds Y ˘i . That is, L2

1pZR;S`q is isomorphic to the space of elements

α‘ pψiqiě0 ‘ pϕjqjě1 P L
2
1pZ;S`q ‘ p

à

iě0

L2
1pCi;S

`qq ‘ p
à

jě1

L2
1pWj ;S

`qq

such that

rZ`pαq “ rC´pψ0q,

rC`pψiq “ rW´ pϕi`1q

rC´pψjqpY
`
j q “ rW` pϕjq

for every i ě 0, j ě 1. A quick proof of such a statement may be deduced from Lemma 3 of [Man07]. A
consequence of this lemma is that any element of this space must lie in L2

1,locpZR;S`q. Therefore, this space
is isomorphic to the subspace of elements in L2

1,locpZR;S`q with finite L2
1-norm, which is exactly the space

L2
1pZR;S`q.

It follows that L2
1pZR;S`q is isomorphic to the kernel of the map

R : L2
1pZ;S`q‘p

à

iě0

L2
1pCi;S

`qq ‘ p
à

jě1

L2
1pWj ;S

`qq

Ñ L2
1{2pY0,`;Sq ‘ p

à

iě1

L2
1{2pYi,`;Sqq ‘ p

à

jě1

L2
1{2pYj,´;Sqq

that sends
α‘ pψiqiě0 ‘ pϕjqjě1

to
prZ`pαq ´ r

C
´pψ0qq ‘ pr

C
`pψiq ´ r

W
´ pϕi`1qqiě0 ‘ pr

C
´pψjq ´ r

W
` pϕjqqjě0.

This map is certainly surjective by application of Theorem 3.3.3.
The Dirac operator D`pZRq is isomorphic to the restriction to kerR of the operator

D0 : L2
1pZ;S`q ‘ p

à

iě0

L2
1pCi;S

`qq ‘ p
à

jě1

L2
1pWj ;S

`qq Ñ L2pZ;S´q ‘ p
à

iě0

L2pCi;S
´qq

‘ p
à

jě1

L2pWj ;S
´qq
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that sends
α‘ pψiqiě0 ‘ pϕjqjě1

to

D`pZqpαq ‘ pD`pCiqpψiqqiě0 ‘ pD
`pWjqpϕjqqjě1.

Define D1 to be the operator D0 ‘ R. Applying Lemma 2.3.7, it follows that D1 is Fredholm and has
index equal to that of D`pZRq.

Note that D1 is a direct sum of the operators

α‘ pψiqiě0 ‘ pϕjqjě1 ÞÑ pD`pCiqpψiqqiě0

and the operator

D2 : L2
1pZ;S`q ‘ p

à

iě0

L2
1pCi;S

`qq ‘ p
à

jě1

L2
1pWj ;S

`qq Ñ L2pZ;S´q ‘ p
à

jě1

L2pWj ;S
´qq

‘ L2
1{2pY0,`;Sq

‘ p
à

iě1

L2
1{2pYi,`;Sqq

‘ p
à

jě1

L2
1{2pYj,´;Sqq

sending

α‘ pψiqiě0 ‘ pϕjqjě1

to

D`pZqpαq ‘ pD`pWjqpϕjqqjě1 ‘ pr
Z
`pαq ´ r

C
´pψ0qq

‘ prC`pψiq ´ r
W
´ pϕi`1qqiě0

‘ prC´pψjq ´ r
W
` pϕjqqjě0.

By Theorem 3.3.5, the first operator is surjective, so we can apply Lemma 2.3.7 once more. Restrict D2 to
the kernel of the first operator. This restriction will also be written as D2, with domain and range specified
appropriately:

D2 : L2
1pZ;S`q ‘ p

à

iě0

kerpD`pCiqqq ‘ p
à

jě1

L2
1pWj ;S

`qq Ñ L2pZ;S´q ‘ p
à

jě1

L2pWj ;S
´qq

‘ L2
1{2pY0,`;Sq

‘ p
à

iě1

L2
1{2pYi,`;Sqq

‘ p
à

jě1

L2
1{2pYj,´;Sqq

Then, Lemma 2.3.7 states that D2 is Fredholm and has index equal to that of D1. Next, we apply the
second assertion of 3.3.5. This requires first projecting the boundary values onto the two spectral subspaces
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of DpY q, casting D2 as the isomorphic operator

D3 : L2
1pZ;S`q ‘ p

à

iě0

kerpD`pCiqqq ‘ p
à

jě1

L2
1pWj ;S

`qq Ñ L2pZ;S´q ‘ p
à

jě1

L2pWj ;S
´qq

‘K`pY0,`q ‘K´pY0,`q

‘ p
à

iě1

K`pYi,`q ‘K´pYi,`qq

‘ p
à

jě1

K`pYj,´q ‘K´pYj,´qq

sending

α‘ pψiqiě0 ‘ pϕjqjě1

to

D`pZqpαq ‘ pD`pWjqpϕjqqjě1 ‘ pΠ`pr
Z
`pαq ´ r

C
´pψ0qqq

‘ pΠ´pr
Z
`pαq ´ r

C
´pψ0qqq

‘ pΠ`pr
C
`pψiq ´ r

W
´ pϕi`1qqqiě0

‘ pΠ´pr
C
`pψiq ´ r

W
´ pϕi`1qqqiě0

‘ pΠ`pr
C
´pψjq ´ r

W
` pϕjqqqjě1

‘ pΠ´pr
C
´pψjq ´ r

W
` pϕjqqqjě1.

Recall the calculation of the kernel of the Dirac operator on the finite cylinder C. For an element ϕ in
this kernel, write down its eigenfunction decomposition ϕptq “

ř

λ fλptqϕλ. Then one finds

ϕp´Rq “
ÿ

λ

eλRfλp0qϕλ

and
ϕpRq “

ÿ

λ

e´λRfλp0qϕλ.

In general, one finds for any times t1, t2 P r´R,Rswith t1 ď t2 that

ϕpt2q “
ÿ

λ

e´λpt2´t1qfλp0qϕλ.

A common shorthand for this kind of expression is

ϕpt2q “ ept2´t1qDpY qϕpt1q.

The operator ept2´t1qDpY q commutes with the projections Π˘, and so preserves the eigenspaces K˘pY q.
In particular, to reconstruct the entire spinor ϕptq, one needs only know Π`pϕp´Rqq and Π´pϕpRqq. Then
ϕptq is written as

ϕptq “ ept`RqDpY qΠ`pϕp´Rqq ` e
pt´RqDpY qΠ´pϕpRqq.
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This implies the map
K`pY q ‘K´pY q Ñ kerpD`pCqq

defined by
pη`, η´q ÞÑ ϕptq “ ept`RqDpY qη` ` e

pt´RqDpY qη´

is an isomorphism, as it forms an inverse to the isomorphism

kerpD`pCqq Ñ K`pY q ‘K´pY q

defined in Theorem 3.3.5.
Composing this with the map

kerpD`pCqq Ñ K`pY q ‘K´pY q

defined by
ϕptq ÞÑ pΠ`pϕpRqq,Π´pϕp´Rqqq

yields a map
K`pY q ‘K´pY q Ñ K`pY q ‘K´pY q

defined by
pη`, η´q ÞÑ pe2RDpY qη`, e

´2RDpY qη´q.

Now we can remove the kerpD`pCiqq-summands in the domain of D3, as through this isomorphism
described above D3 is itself isomorphic to an operator

D4 : L2
1pZ;S`q ‘ p

à

iě0

K`pYi,`q ‘K´pYi`1,´qq ‘ p
à

jě1

L2
1pWj ;S

`qq Ñ L2pZ;S´q ‘ p
à

jě1

L2pWj ;S
´qq

‘K`pY0,`q ‘K´pY0,`q

‘ p
à

iě1

K`pYi,`q ‘K´pYi,`qq

‘ p
à

jě1

K`pYj,´q ‘K´pYj,´qq.

The notation is somewhat difficult to parse through at this point, but this operator is can be expressed
explicitly by replacing each ψi with a pair pηi,`, ηi`1,´q and adjusting the map accordingly. The restriction
Π`pr

C
´pψiqq is replaced with ηi,` while Π´pr

C
´pψiqq is replaced with e´2RDpY qηi`1,´. Similarly, the restric-

tion Π`pr
C
`pψiqq is replaced with e2RDpY qηi,` while Π´pr

C
`pψiqq is replaced with ηi`1,´.

The operator D4 is defined as the map sending

α‘ pηi,`, ηi`1,´qiě0 ‘ pϕjqjě1
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to

D`pZqpαq ‘ pD`pWjqpϕjqqjě1 ‘ pΠ`pr
Z
`pαqq ´ η0,`q

‘ pΠ´pr
Z
`pαqq ´ e

´2RDpY qη1,´q

‘ pe2RDpY qηi,` ´Π`pr
W
´ pϕi`1qqqiě0

‘ pηi`1,´ ´Π´pr
W
´ pϕi`1qqqiě0

‘ pηj,` ´Π`pr
W
` pϕjqqqjě1

‘ pe´2RDpY qηj`1,´ ´Π´pr
W
` pϕjqqqjě1.

Consider the operator sending

α‘ pηi,`, ηi`1,´qiě0 ‘ pϕjqjě1

to

pΠ`pr
Z
`pαqq ´ η0,`q ‘ pηi`1,´ ´Π´pr

W
´ pϕi`1qqqiě0 ‘ pηj,` ´Π`pr

W
` pϕjqqqjě1

.
This is clearly surjective when restricting to the locus of tuples in the domain satisfying α “ 0, ϕj “ 0

for every j ě 1, so the operator is surjective overall. Therefore, we may apply Lemma 2.3.7 again to obtain
an operator D5 that is Fredholm and has the same index as D4. Note that our expressions have finally
started becoming simpler, since restricting to the kernel of the above operator implies Π`pr

Z
`pαqq “ η0,`,

Π´pr
W
´ pϕi`1qq “ ηi,´ for every i ě 1 and Π`pr

W
` pϕjqq “ ηj,` for every j ě 1.

Then after switching some signs, D5 is written as the map

D5 : L2
1pZ;S`q ‘ p

à

iě0

K`pYi,`q ‘K´pYi`1,´qq ‘ p
à

jě1

L2
1pW

j ;S`qq Ñ L2pZ;S´q ‘ p
à

jě1

L2pWj ;S
´qq

‘K´pY0,`q

‘ p
à

iě1

K´pYi,`qq

‘ p
à

jě1

K`pYj,´qq

sending

α‘ pηi,`, ηi,´qiě0 ‘ pϕjqjě1

to

D`pZqpαq ‘ pD`pWjqpϕjqqjě1 ‘ pΠ´pr
Z
`pαqq ´ e

´2RDpY qΠ´pr
W
´ pϕ1qqq

‘ pΠ`pr
W
´ pϕi`1qq ´ e

2RDpY qΠ`pr
W
` pϕiqqqiě0

‘ pΠ´pr
W
` pϕjqq ´ e

´2RDpY qΠ´pr
W
´ pϕjqqqjě1.
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Next, we observe that making R arbitrarily large allows us to “remove” the terms depending on R.
Namely, define the operators

D6 : L2
1pZ;S`q ‘ p

à

iě0

K`pYi,`q ‘K´pYi`1,´qq ‘ p
à

jě1

L2
1pW

j ;S`qq Ñ L2pZ;S´q ‘ p
à

jě1

L2pWj ;S
´qq

‘K´pY0,`q

‘ p
à

iě1

K´pYi,`qq

‘ p
à

jě1

K`pYj,´qq

sending

α‘ pηi,`, ηi,´qiě0 ‘ pϕjqjě1

to

D`pZqpαq ‘ pD`pWjqpϕjqqjě1 ‘ pΠ´pr
Z
`pαqqq

‘ pΠ`pr
W
´ pϕi`1qqqiě0

‘ pΠ´pr
W
` pϕjqqqjě1.

and

A : L2
1pZ;S`q ‘ p

à

iě0

K`pYi,`q ‘K´pYi`1,´qq ‘ p
à

jě1

L2
1pW

j ;S`qq Ñ L2pZ;S´q ‘ p
à

jě1

L2pWj ;S
´qq

‘K´pY0,`q

‘ p
à

iě1

K´pYi,`qq

‘ p
à

jě1

K`pYj,´qq

sending

α‘ pηi,`, ηi,´qiě0 ‘ pϕjqjě1

to

t0u ‘ t0u ‘ pe´2RDpY qΠ´pr
W
´ pϕ1qqq

‘ pe2RDpY qΠ`pr
W
` pϕiqqqiě0

‘ pe´2RDpY qΠ´pr
W
´ pϕjqqqjě1.

We have D5 “ D6 ` A. Since DpY q has no kernel, we may set µ ą 0 to be the smallest absolute value
of the eigenvalues of DpY q. Let φλ be the eigenfunction with eigenvalue λ. If λ ą 0, then e´2RDpY qϕλ “
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e´2Rλϕλ. If λ ă 0, then e2RDpY qϕλ “ e2Rλϕλ. Along with the facts that the restriction and spectral pro-
jection maps are bounded, it follows that there is some constant M ą 0 independent of R such that the
operator norm ofA is less thanMe´µR. Therefore, by making R arbitrarily large, we can make the operator
norm of A arbitrarily small.

Recall it was mentioned at the end of the last section that Fredholm operators are stable under perturba-
tion by operators of small operator norm. In particular, if D5 is Fredholm, then upon making R sufficiently
large, D6 is Fredholm with the same index as D5.

Now observe that D6 can be expressed as the direct sum of the operators

D7 : α ÞÑ pD`pZqpαq,Π´pr
Z
`pαqqq

and
pϕjqjě1 ÞÑ pD`pWjqpϕjq,Π`pr

W
´ pϕjqq,Π´pr

W
` pϕjqqqjě1.

The last set of operators is a direct sum of the Dirac operators with APS boundary conditions on the
manifold W . It was shown earlier in Theorem 3.3.4 that these operators are isomorphisms. It follows that
D6 is isomorphic to D7.

However, the operatorD7 is simply the Dirac operator with APS boundary conditions on the 4-manifold
Z. By the exact same proof as Theorem 3.3.4, namely the application of Proposition 3.11 of the first part of
[APS75], it follows that the Fredholm index of D7 is the same as the Fredholm index of the Dirac operator
on Z with a cylindrical end attached, which is exactly the manifold Z8 introduced earlier. Therefore, we
have constructed a sequence of equivalences that show

indD`pZRq “ indD`pZ8q

for sufficiently large R.

3.4 The monopole count

In this section, we will show the second theorem necessary to finish off the proof of 3.2.1.

Theorem 3.4.1. Recall the space of solutionsMpXR, gR, p̂Rq discussed at the end of Section 2. There is an equality

#MpXR, gR, p̂Rq ” Lefpmo
oq

modulo 2.

This theorem depends crucially on the foundational theory of Seiberg-Witten-Floer homology discussed
in [KM07]. As we have been doing, we will freely make use of results from this book without proof.

First, we will establish some additional notation.
Recall that XR “W YY r´R,Rs ˆ Y . Similarly, define the manifold

WR1 “ r´R
1, 0s ˆ Y Yt´R1uˆY W YtR1usY r0, R

1s ˆ Y.
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Also, for any 0 ă R1 ă R, write IR1,R for the interval r´R`R1, R´R1s. Then, one can also write

XR “WR1 YY IR1,R ˆ Y.

Write W8 for the manifold
p´8, 0s ˆ Y YY W YY r0,8q ˆ Y.

Then for finite R1, write IR1,8 “ pp´8,´R1s Y rR1,8qq ˆ Y .
The main intuition behind Theorem 3.4.1 is as follows. A solution to the Seiberg-Witten equations on

WR may be restricted to the two boundary components Y and Y to produce two configurations, both lying
in the space BσpY q. Solutions to the Seiberg-Witten equations on XR correspond to those solutions on WR

for which these two restrictions are the same.
Therefore, as R Ñ 8, solutions to the Seiberg-Witten equations on XR should correspond to solutions

to the Seiberg-Witten equations onW8 that are asymptotic to the same critical point in BσpY q on both ends.

3.4.1 A compactness theorem

The first step in verifying this intuition is by proving a compactness theorem. For any critical points ras, rbs P
BσpY q, denote byMpras,W8, rbsq the space of gauge-equivalence classes of solutions to the Seiberg-Witten
equations on W8 that are asymptotic to ras on the “negative” end and rbs on the “positive” end. The metric
and perturbation are induced from the ones given on X , and the perturbation is such that all of these
moduli spaces are regular. For a detailed discussion of this, see Lemma 8.1 of [LRS17] and Proposition
24.4.7 of [KM07].

We will show that solutions to the Seiberg-Witten equations on XR, as RÑ8, are indeed “asymptotic”
to elements inMpras,W8, rasq in the appropriate sense.

We define this “appropriate sense” below. Note that from our discussion about perturbations at the
end of Section 3.2, the spaces MpXR, gR, pRq contain no reducibles. Therefore, it is well-defined to refer
to elements α P MpXR, gR, pRq by their “blown-down” versions, i.e. gauge-equivalence classes of pairs
pA,ϕq of a spinc connection and spinor that satisfy the regular perturbed Seiberg-Witten equations on XR.
Similarly, for the spaceMpras,W8, rasq, if ras is an irreducible critical point, then the elements of the space
are most certainly irreducible solutions of the Seiberg-Witten equations on W8.

Definition 3.4.2. Fix some integer k ě 3. Let Rn be a sequence of positive real numbers such that Rn Ñ8.
Then, a sequence of solutions γn PMpXRn , gRn , pRnq are said to converge to a solution γ PMpras,W8, rasq

if:

1. There are gauge-equivalence class representatives pAn, ϕnq of γn for every n, a representative pA,ϕq
of γ, and L2

k`1 gauge transformations un : XRn Ñ S1 such that the sequence un ¨ pAn, ϕnq converges
to pA,ϕq in L2

k on all compact sets in W8.

2. Let α be a gauge-equivalence representative of the irreducible critical point ras P BpY q. For any
interval IR1,R, let γα be the solution to the Seiberg-Witten equations on IR1,RˆY given by the constant
trajectory at the critical point α. Then, for any ε ą 0, there exists a real number R ą 0 and an integer
N ą 0 such that, for any n ą N we have Rn ą R and an L2

k`1 gauge transformation vn : XRn Ñ S1

such that
||vn ¨ pAn, ϕnq|IR,Rn ´ γα||L2

k
ă ε
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where γα is the constant trajectory on IR,Rn .

The condition of “convergence on compact subsets” is well-defined here, since any compact subset of
W8 is identified canonically with a compact subset of XRn for sufficiently large n.

Given this, we may state the compactness theorem.

Theorem 3.4.3. LetRn be a sequence of positive real numbers such thatRn Ñ8. Consider any sequence of solutions
γn PMpXRn , gRn , pRnq. Then, after passing to a subsequence, there exists some irreducible critical point ras such
that the sequence pγnq converges in the sense of Definition 3.4.2 to an element ofMpras,W8, rasq.

This theorem is proved in a very similar fashion to the theorem of Kronheimer and Mrowka showing
that spaces of broken trajectories are compact.

However, the result is simplified by a simple dimension count, which shows that the “broken” trajecto-
ries can really only be single trajectories.

We begin with some foundational compactness theorems.
All of these depend on control of a quantity known as the perturbed topological energy of a solution.
For a cylinder of the form I ˆ Y for I “ rt1, t2s Ă R a finite interval, and a perturbation q, the perturbed

topological energy of a connection-spinor pair pA,ϕq is given by

Etopq pA,ϕq “ 2pLqppA,ϕq|tt1uˆY q ´ LqppA,ϕq|tt2uˆY qq.

For the cobordism WR, it is defined as

Etopq pA,ϕq “ 2pLqppA,ϕq|tRuˆY q ´ LqppA,ϕq|t´RuˆY qq.

The following compactness theorem on the finite cylinder is shown in Theorem 10.7.1 of [KM07]. The
approach is similar to the original proof of compactness of the space of solutions to the Seiberg-Witten
equations on a 4-manifold without boundary. However, the presence of a boundary does add some compli-
cations. In particular, the elliptic estimate is used in the original proof to obtain convergence in arbitrarily
high Sobolev norm. In the presence of a boundary, the elliptic estimate only holds on an interior region, so
convergence can only be guaranteed on an interior region.

Also, for all subsequent compactness theorems, “convergence in L2
k” or similar statements will always

be assumed to have k be some large integer greater than or equal to 3.

Theorem 3.4.4. Let pAn, ϕnq be a sequence of solutions to the Seiberg-Witten equations (perturbed by q) on rt1, t2sˆ
Y such that there is a constant M ą 0 independent of n such that

Etopq pAn, ϕnq ďM

for every n. Then, after passing to a subsequence, there is a sequence of L2
k`1 gauge transformations un : rt1, t2s ˆ

Y Ñ S1 such that the sequence un ¨ pAn, ϕnq converges in L2
k to some solution pA,ϕq on any interior region.

Given two (gauge-equivalence classes of) critical points ras, rbs of the Chern-Simons-Dirac functional,
let the spaceMpras, rbsq denote the space of all gauge-equivalence classes of solutions to the regular (not
blown-up) Seiberg-Witten equations on the infinite cylinderRˆY that are asymptotic to ras on the negative
end and rbs on the positive end.
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Theorem 3.4.5. Let In “ rt1,n, t2,nsˆY be a sequence of finite intervals such that limnÑ8 t1,n “ ´8, limnÑ8 t2,n “

8. Let pAn, ϕnq be a sequence of connection-spinor pairs such that pAn, ϕnq is a solution of the Seiberg-Witten equa-
tions on In ˆ Y . Furthermore, suppose there exists some constant M ą 0 independent of n such that the topological
energies satisfy the bound

Etopq pAn, ϕnq ďM

for every n. Then, after passing to a subsequence, there is a sequence of L2
k`1 gauge transformations un : rt1, t2s ˆ

Y Ñ S1 such that the sequence un ¨ pAn, ϕnq converges in L2
k on any compact subset to some solution pA,ϕq

of the Seiberg-Witten equations on the infinite cylinder R ˆ Y whose orbit under the action of the group of gauge
transformations lies in a moduli space of the formMpras, rbsq for some critical points ras, rbs in BpY q.

Proof. This follows from a classic diagonal argument using Theorem 3.4.4.
Wherever defined, there are a sequence of gauge transformations un,1 such that, after passing to a sub-

sequence, un,1 ¨ pAn, ϕnq converges in L2
k to some pair pAp1q, ϕp1qq on r´1, 1s ˆ Y .

Denote this sequence by pAn,1, ϕn,1q “ un,1 ¨ pAn, ϕnq.
Repeating this again, we may take a subsequence and apply gauge transformations un,2 to get un,2 ¨

pAn,1, ϕn,1q “ pAn,2, ϕn,2q converging in L2
k to some pair pAp2q, ϕp2qq on r´2, 2s ˆ Y .

The restriction of pAp2q, ϕp2qq to r´1, 1s ˆ Y must be gauge-equivalent to pAp1q, ϕp1qq. We can prove this
by the following argument.

First, note that that the space of gauge-equivalence classes of configurations on a finite cylinder is Haus-
dorff (Proposition 9.3.1 of [KM07]). Then, the restrictions of pAn,2, ϕn,2q to r´1, 1sˆY are gauge-equivalent
to the corresponding terms in the sequence pAn,1, ϕn,1q. It follows that their limits on r´1, 1sˆY must then
also be gauge-equivalent.

Continue taking subsequences in this fashion to get sequences pAn,m, ϕn,mq that converge in L2
k on

r´m,ms ˆ Y for every positive integer m. Then, take the diagonal subsequence pAn,n, ϕn,nq.
This is the desired “gauge-transformed” subsequence of pAn, ϕnq that by definition converges in L2

k on
any finite cylinder r´m,ms ˆ Y , and therefore any compact subset of Rˆ Y .

It remains to show that the limits pApmq, ϕpmqq on r´m,ms ˆ Y are gauge-equivalent to the restriction
of some single solution pA,ϕq on R ˆ Y . This is true by a rather “formal” argument. It is clear that,
after quotienting out by gauge-equivalence, the limits pApmq, ϕpmqq glue together to form a gauge orbit of
solutions on the infinite cylinder that has uniformly bounded topological energy on any finite cylinder.
This gauge orbit must then lie in one of the spaces Mpras, rbsq. Following this, we simply pick a gauge
representative and that is the desired limit pA,ϕq.

Theorem 3.4.6. Let Rn be a sequence of positive real numbers such that Rn Ñ 8. Let pAn, ϕnq be a sequence
of connection-spinor pairs such that pAn, ϕnq is a solution to the Seiberg-Witten equations on WRn for every n.
Furthermore, suppose there exists some constant M ą 0 independent of N such that the topological energies satisfy
the bound

Etopq pAn, ϕnq ďM

for every n. Then, after passing to a subsequence, there is a sequence of L2
k`1 gauge transformations un : WRn Ñ S1

such that the sequence un ¨ pAn, ϕnq converges in L2
k on all compact subsets to some solution pA,ϕq of the Seiberg-

Witten equations on W8 whose orbit under the action of the group of gauge transformations lies in a moduli space of
the formMpras,W8, rbsq for some critical points ras, rbs in BpY q.
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Proof. This is essentially identical to the proof of Theorem 3.4.5. Instead of using Theorem 3.4.4, instead one
uses the analogous Theorem 24.5.2 of [KM07].

Although we have not emphasized it too much as of yet, it is generally nicer analytically to work with
the non-blown-up Seiberg-Witten equations. The compactness theorems above require control of the topo-
logical energy only, while in the blown-up setting additional control is required, specifically on the slice-
wise norm of the spinorial part of the solutions.

Next, we will prove a result regarding Seiberg-Witten trajectories that are close to the constant trajec-
tory. A solution γ to the Seiberg-Witten equations on a finite cylinder is a constant trajectory if and only if
Etopq pγq “ 0.

If γ is constant, it takes the same values on either boundary component of the cylinder and so its topo-
logical energy vanishes by definition. On the other hand, the topological energy of a trajectory γ vanishes if
and only if it takes the same value on either boundary component. However, if γ solves the Seiberg-Witten
equations, then it is a downward gradient flow line. If the topological energy vanishes, then γ is a down-
ward gradient flow line that takes the same value on either boundary component. It follows that it must
take the same value on every slice ttu ˆ Y , and so is equal to a constant trajectory.

For the proof of Theorem 3.4.3, consider a sequence of solutions on XRn . On the neck r´Rn, Rns ˆ Y

for large enough n, it will be shown that the topological energy of the solutions are uniformly bounded
independent of n. This energy behaves in an interesting manner, in that it “concentrates” inside regions of
the form JˆY Ă r´Rn, RnsˆY for small intervals J of size independent of n. Since the energy is finite, this
naturally means the restrictions of the solutions to most of the neck have very low topological energy, and
so are in this sense “nearly constant”. It will be shown that these restrictions are in fact “nearly constant”
in the traditional sense, that is they are very close in the L2

k norm to the constant trajectory for some critical
point.

These phenomena will become more apparent as we continue to prove these results.

Lemma 3.4.7. 1. For any solution pA,ϕq to the Seiberg-Witten solutions on the cylinder I ˆ Y for I a finite
interval, the topological energy Etopq pA,ϕq is nonnegative and vanishes if and only if pA,ϕq is gauge-equivalent
to a constant trajectory.

2. There is some constant M 1 independent of R such that Etopq pA,ϕq ěM 1 for any solution pA,ϕq to the Seiberg-
Witten equations on WR.

Proof. The first statement was proven in our discussion above.
The proof of the second statement makes use of the analytic properties of the perturbation in the per-

turbed case, which we have not discussed. Therefore, we will assume for this exposition that the perturba-
tion is equal to zero.

Recall the cobordism W has boundary components Y and Y to which the cylinders r´R, 0s ˆ Y and
r0, Rs ˆ Y are attached to create WR.

The topological energy of pA,ϕq restricted to W is by definition equal to 2pLppA,ϕq|Y q ´ LppA,ϕq|Y qq.
It is then given by the first statement that

Etopq pA,ϕq “ Etopq ppA,ϕq|r´R,0sˆY q ` 2pLppA,ϕq|Y q ´ LppA,ϕq|Y qq ` E
top
q ppA,ϕq|r0,RsˆY q

ě 2pLppA,ϕq|Y q ´ LppA,ϕq|Y qq.
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It remains to bound this last term below. By Proposition 4.5.2 of [KM07], one has the equality

2pLppA,ϕq|Y q ´ LppA,ϕq|Y qq “
1

4

ż

W

|FA|
2 `

ż

W

|∇Aφ|2 `
1

4

ż

W

p|φ|2 ` ps{2qq2 ´

ż

W

s2{16

where s denotes the scalar curvature.
All of these terms are positive but one, the scalar curvature, which depends only on the geometry of the

manifold W and is bounded below. It follows that there is a lower bound depending only on the geometry
of W , and thus independent of the pair pA,ϕq.

Next, pick some “separating neighborhoods” for the critical points. Specifically, for any gauge-equivalence
class of (not necessarily irreducible) critical points ras, pick neighborhoods Uras of ras in BpY q such that Uras
and Urbs are disjoint whenever ras ‰ rbs. This can be done because the critical points are a finite, discrete
set in BpY q.

Let rγas be the corresponding class of trajectories on r0, 1sˆY gauge-equivalent to the constant trajectory
at some representative of ras. Choose an open neighborhood U r0,1s

ras of rγas in Bpr0, 1s ˆ Y q such that for any

γ P U
r0,1s
ras , the restriction of γ to the slice ttu ˆ Y for any t P r0, 1s lies in Uras.

Lemma 3.4.8. There is a constant ε0 ą 0 such that any solution pA,ϕq to the Seiberg-Witten equations on r´1, 2sˆY

with topological energy Etopq pA,ϕq ă 3ε0 satisfies rpA,ϕq|r0,1sˆY s Ă U
r0,1s
ras for some critical point ras. The term

rpA,ϕq|r0,1sˆY s denotes the gauge orbit of the restriction of pA,ϕq to r0, 1s ˆ Y .

Proof. Suppose that this is not the case.
Then, there is a sequence of solutions pAn, ϕnq on r´1, 2s ˆ Y with topological energy decreasing to 0

such that they do not lie in any of these neighborhoods.
Since their topological energy is bounded, we may apply gauge transformations and pass to a subse-

quence to find that they converge to a solution of zero topological energy on r0, 1s ˆ Y . This solution, by
the first statement of Lemma 3.4.7, must be gauge-equivalent to a constant solution.

This is a contradiction, because we have rpAn, ϕnq|r0,1sˆY s lies in some U r0,1s
ras for sufficiently large n.

Now we can begin the proof of Theorem 3.4.3.
Let pAn, ϕnq be a sequence of solutions on XTn . To make use of the earlier compactness theorems, the

first step is to show uniform upper bounds on the topological energy.
Observe that

Etopq ppAn, ϕnq|r´Tn,TnsˆY q “ 2pLqppAn, ϕnq|t´TnuˆY q ´ LqppAn, ϕnq|tTnuˆY qq

“ ´Etopq ppAn, ϕnq|W q.

Now apply Lemma 3.4.7. Combined with the above, it follows that Etopq ppAn, ϕnq|r´Tn,TnsˆY q ď ´M 1

and Etopq ppAn, ϕnq|W q ď 0.
These immediately imply there is some uniform upper bound M on the topological energy of pAn, ϕnq

on WT for any 0 ă T ă Tn and on I ˆ Y for any I Ă r´Tn, Tns.
Let ε0 ą 0 be the constant of Lemma 3.4.8. Then, for any n, there are at most M{ε0 integers p such that

rp, p` 1s Ă r´Tn, Tns and
Etopq ppAn, ϕnq|rp,p`1sˆY q ě ε0.
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These can be regarded as the areas where the energy of the solution concentrates. However, these may
change wildly with n.

Their behavior can be made much simpler by passing to subsequences. After taking a subsequence, one
can assume there is a constant number k of them, independent of n. Label them in increasing order by

pn1 ă pn2 ă ¨ ¨ ¨ ă pnk .

Also set pn0 “ r´Tns and pnk`1 “ tTnu ´ 1. Now the differences pni`1 ´ pni form sequences of positive
integers, and as such they have two possible modes of behavior. Either they have an infinite constant
subsequence, or they diverge and grow arbitrarily large in size with n. Therefore, after passing to a sub-
sequence, we can assume for every i that the sequence pni`1 ´ pni is either independent of n or satisfies
limnÑ8 p

n
i`1 ´ p

n
i “ 8.

Next, define an equivalence relation on the set of indices t0, 1, . . . , k ` 1u by saying that m1 „ m2 if the
sequence |pnm1

´ pnm2
| is independent of n. There are a total of d equivalence classes. The number d may

depend on n, but by passing to a further subsequence we can ensure that it is independent of n again.
Pick representatives m1 ă ¨ ¨ ¨ ă md of the equivalence classes. Then, for every 1 ď i ď d, set ani to be

the minimum element of the equivalence class of mi and bni to be the maximum element of the equivalence
class of mi.

With this construction, we have isolated the intervals where the energy of the solutions are concentrated.
One has bni ´ ani is independent of n for every i, while ani`1 ´ bni grows arbitrarily large as n goes to 8.
Qualitatively, the regions rani , b

n
i ` 1s will have a large amount of energy for all n, while the intervals

rbni ` 1, ani`1swill have a small amount of energy.
Quantitatively, any interval of the form rm ´ 1,m ` 2s in rbni ` 1, ani`1s will by definition satisfy the

property that, for any n,
Etopq ppAn, ϕnq|rm´1,m`2sˆY q ă 3ε0.

Translating and applying Lemma 3.4.8 to all of these intervals, it follows that there is some critical point
rais such that rpAn, ϕnq|ttuˆY s P Urais for all t P rbni ` 2, ani`1 ´ 1s. The critical point ras may depend on n,
but a reader who has been diligently following along will know the drill by now: pass to a subsequence so
that rais is independent of n.

This implies that the sequence pAn, ϕnq, after passing to a subsequence, converges to a “broken trajec-
tory” in the following sense. Using Theorem 3.4.6, there are gauge transformations un : XTn Ñ S1 such
that pAn, ϕnq converges on compact sets in L2

k to some solution on W8. Using the previous work, we can
see that in fact this solution lies inMprad´1s,W8, ra1sq.

One way to see this explicitly is by restricting pAn, ϕnq to the manifold

r´Tn, a
n
2 ` 1s ˆ Y Yt´TnuˆY W YtTnuˆY rb

n
d´1 ` 2, Tns ˆ Y

for every n. The further restrictions of pAn, ϕnq to these cylinder ends lie in the neighborhoods Ura1s and
Urad´1s (on each time slice, of course) respectively.

Taking Tn to 8 then makes the statement clear. However, it is crucial to note that this limit is not in the
spaceMpra1s,W8, rad´1sq, but ratherMprad´1s,W8, ra1sq. Recall the metric is defined on XTn,Tn such that
the neck r´Tn, Tns ˆ Y is a metric cylinder. Because of this, the time coordinate in the induced metric on
W8 is reversed. Therefore, the Seiberg-Witten gradient flow lines travel “backwards” on W8, going from
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rad´1s to ra1s rather than the other way around.
Now take a fixed integerm between 2 and d´1. Take for any n the restriction of pAn, ϕnq to the cylinder

rbnm´1 ` 2, anm`1 ´ 1s ˆ Y Ă r´Tn, Tns ˆ Y .
We have that these endpoints go to ´8 and 8 respectively as n Ñ 8. Applying Theorem 3.4.5, after

applying gauge transformations and passing to a subsequence, they converge in L2
k on compact sets to

some solution on Rˆ Y . By identical reasoning to above, this limit will lie inMpram´1s, ramsq.
With this, we have produced a “broken trajectory”. By restricting the sequence pAn, ϕnq to different

parts of the manifold XTn and taking nÑ8, we have produced a trajectory in the spaces

Mpra1s, ra2sq, . . . ,Mprad´2s, rad´1sq

and in
Mprad´1s,W8, ra1sq.

We now claim:

Lemma 3.4.9. The variable d must be equal to 2.

Proof. Recall all of the moduli spaces are assumed to be regular. Let grQprasq denote the Q-grading of a
critical point ras.

It follows that any moduli space of the formMpras, rbsq has dimension equal to grQprasq ´ grQprbsq ´ k

for some nonnegative integer k. Furthermore, by translation-invariance of gradient flow lines, the space is
nonempty if and only if this dimension is at least one.

This can be determined from the fact that the relative grading is the difference in Q-gradings, and the
blown-down version of Proposition 14.5.7 from [KM07]. It is also crucial to note that at least one of ras or
rbs must be irreducible for the moduli space to be nontrivial, as Y is an integral homology 3-sphere so it
only has one gauge-equivalence class of reducible critical points.

The fact thatMprais, rai`1sq is nonempty for 1 ď i ď d ´ 2 requires that the Q-gradings of the critical
points obey the inequality

grQpraisq ą grQprai`1sq

.
The analogous result for cobordisms, Proposition 24.4.6 of [KM07], shows that grQprad´1sq ě grQpra1sq.

If d ą 2, this is clearly impossible.
Therefore, we must have d “ 2.

We have almost arrived at the proof of Theorem 3.4.3. Substituting in d “ 2, ras “ ra1s “ rad´1s, the
solutions pAn, ϕnq converge in the sense of Definition 3.4.2 to a solution inMpras,W8, rasq.

It remains to show that ras is irreducible. For the proof of this, we will refer the curious reader to Lemma
8.10 of [LRS17] as, while it is a crucial result, it does not add much to the exposition to present it here.

3.4.2 An application of Kronheimer-Mrowka’s local gluing theorem

In this subsection, we will apply a result of Kronheimer and Mrowka described as a “local gluing theorem”
along with the compactness result of Theorem 3.4.3 to prove Theorem 3.4.1.

Specifically, we will prove the following theorem, which almost immediately implies Theorem 3.4.1.
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Suppressing the metric and perturbation, letM˚pXRq denote the moduli space of irreducible solutions to
the Seiberg-Witten equations onXR. Similarly, for any 0 ă R1 ă R, letM˚pWR1q andM˚pIR1,RˆY q denote
the spaces of irreducible solutions onWR1 and the finite cylinder over the interval IR1,R “ r´R`R1, R´R1s,
respectively.

Theorem 3.4.10. Let C˚ be the set of all gauge-equivalence classes of critical points. For all sufficiently large R ą 0,
the moduli spaceMpXR, gR, pRq is regular and there is a homeomorphism

ρ :MpXR, gR, pRq Ñ YrasPC˚Mpras,W8, rasq.

The statement about regularity is important, as we have not actually shown that MpXRq is regular,
which is necessary for using it as a component of the invariant λSW pXRq!

Let B˚pY q denote the space of irreducible configurations on Y . Then, by restricting to the boundary
components, there are natural restriction maps

r´R1 :M˚pWR1q Ñ B˚pY q ˆ B˚pY q

and
r`R1,R :M˚pIR1,Rq Ñ B˚pY q ˆ B˚pY q.

The latter map is also defined for R “ 8, that is there is a restriction map

r`R1,8 :M˚pIR1,8q Ñ B˚pY q ˆ B˚pY q.

The natural approach to understanding solutions on XR are to restrict to WR1 and IR1,R ˆ Y and study
the two pieces separately. As R Ñ 8, with the appropriate choice of R1 the solution will be very close to
zero on IR1,R ˆ Y . By the “local gluing theorem”, these solutions can be parameterized by small balls in
B˚pY q and matched up with corresponding solutions on IR1,8 ˆ Y , which will show Theorem 3.4.10.

Intuitively, an irreducible solution onXR will be equivalent to a pair consisting of an irreducible solution
on WR1 and an irreducible solution on IR1,R ˆ Y such that their restrictions match up in B˚pY q ˆ B˚pY q. In
other words, it is an element of the fiber product

Fibpr´R1 , r
`
R1,Rq “ tpγW , γIq PM

˚pWR1q ˆM˚pIR1,R ˆ Y q | r
´
R1pγW q “ r`R1,RpγIqu.

Lemma 3.4.11. The natural restriction map fromM˚pXRq ontoM˚pWR1qˆM˚pIR1,RˆY q is a homeomorphism
onto Fibpr´R1 , r

`
R1,Rq.

This is certainly not an obvious statement, and a proof follows from exactly the technique used in
Lemma 19.1.1 of [KM07]. Given a solution on WR1 and a solution on IR1,R ˆ Y , one can apply a gauge
transformation such that they are in temporal gauge in a collar neighborhood of the intersection of WR1

and IR1,R ˆ Y . This implies that they satisfy a differential equation near the intersection, from which it can
be deduced that the two solutions can be “connected” to form a solution on XR.

Now, we state the local gluing theorem. Let IR be the interval r´R,Rs ˆ Y and r`R the corresponding
restriction map fromM˚pIRq to B˚pY q ˆ B˚pY q. For R “ 8, set I8 “ pr0,8q Y p´8, 0sq ˆ Y .

Theorem 3.4.12. There exists a a constant R1 ą 0 such that for all R ě R1 and irreducible critical points ras, there
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exist smooth maps

uraspR,´q : Bprasq ÑM˚pIRq

urasp8,´q : Bprasq ÑM˚pI8q

which are diffeomorphisms from a fixed neighborhood Bprasq of ras in B˚pY q not depending on R onto some neigh-
borhood on the gauge-equivalence class of the constant trajectory rγas. The maps

µraspR,´q “ r`R ˝ uraspR,´q : Bprasq Ñ B˚pY q ˆ B˚pY q

are smooth embeddings for all R P rR1,8s and

µraspR,´q Ñ µrasp8,´q

in the C8loc topology. There also exists a constant η ą 0 independent of R such that the image of the map uraspR,´q
contains every trajectory rγs PM˚pIRq with gauge representative γ satisfying

||γ ´ γa||L2
k
ă η.

Finally, for any R,S P rR1,8s and distinct critical points ras ‰ rbs P C˚, the maps uraspR,´q and urbspS,´q
have disjoint images, as do the maps µraspR,´q and µrbspS,´q.

This theorem is discussed and proved in Section 18 of [KM07]. As mentioned in the book, this theorem is
motivated by the case of solving a finite-dimensional linear flow. The reader is encouraged to read Section
18.1 of [KM07] to better understand Theorem 3.4.12.

The following lemma now proves that for a solution on XR for R large, the restriction to the cylinder
IR1,R ˆ Y is close to a constant trajectory. This is the main application of the compactness theorem of the
previous subsection.

Lemma 3.4.13. Let η ą 0 be as in Theorem 3.4.12. Then there are constants 0 ă R2 ă R3 ă 8 such that for any
R P rR3,8s, any element ofM˚pXRq has a gauge-representative pA,ϕq such that

||pA,ϕq|IR2,R
ˆY ´ γa||L2

k
ă η

for some irreducible critical point a.

Proof. Suppose there are no such constants R2 and R3.
Then there exist constantsRn, R1n Ñ8 and solutions γn PM˚pXRnq such that any gauge representative

pAn, ϕnq of γn satisfies
||pAn, ϕnq|IR1n,RnˆY

´ γa||L2
k
ě η

for any irreducible critical point a.
Pick such a sequence of gauge representatives pAn, ϕnq. Then by Theorem 3.4.3, after applying gauge

transformations and taking a subsequence, this sequence converges in the sense of Definition 3.4.2. How-
ever, the second condition in Definition 3.4.2 is in direct contradiction with the condition above, so the
lemma follows.

The previous results allow us to representM˚pXT q as a union of fiber products.
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Lemma 3.4.14. Let R2 be as in the previous lemma. For R sufficiently large, there exists a homeomorphism

ρ :M˚pXRq “ YrasPC˚ Fibpr´R2
, µraspR´R2,´qq

andM˚pXRq is regular if and only if the maps r´R2
and µraspR´R2,´q are transverse in B˚pY q ˆ B˚pY q.

Proof. By Lemma 3.4.11, we can writeM˚pXRq as Fibpr´R2
, r`R2,R

q for any R.
Then by Lemma 3.4.13, the restriction of any solution in M˚pXRq to IR2,R ˆ Y has a near-constant

gauge-representative, which upon application of Theorem 3.4.12 implies that it can be parameterized by
µraspR ´ R2,´q for some irreducible critical point ras. The fact that the images of these parameterizations
are disjoint then implies the first assertion of the lemma.

The second assertion of the lemma is proved in Theorem 19.1.4 of [KM07].

To finish off the proof of Theorem 3.4.10, the following lemma will be required. Its proof requires an
explicit understanding of the parameterization map in Theorem 3.4.12, so we will defer the reader to the
proof in Lemma 9.7 of [LRS17].

Lemma 3.4.15. Let Bprasq Ă B˚pY q be a neighborhood as in Theorem 3.4.12. Let xn P Bprasq be a sequence of
points and Tn Ñ 8 a sequence of positive real numbers such that µraspTn, xnq converges to µrasp8, xq for some
x P Bprrasq. Then xn converges to x in the topology of B˚pY q.

Now, we will prove Theorem 3.4.10. The first observation is that a similar claim to Lemma 3.4.14 for the
case R “ 8 holds.

Lemma 3.4.16. For any irreducible critical point ras, the maps r´R2
and µrasp8,´q intersect each other transversely

and there is a homeomorphism
Mpras,W8, rasq “ Fibpr´R2

, µrasp8,´qq.

Proof. The transversality follows by our assumption that the moduli spacesMpras,W8, rasq are regular.
The homeomorphism is immediate by Lemma 3.4.14.

For sufficiently large R, the local gluing theorem along with the implicit function theorem implies that
points of Fibpr´R2

, µraspR´R2,´qq and Fibpr´R2
, µrasp8,´qq can be matched up.

Specifically, Theorem 3.4.12 states that µraspR ´ R2,´q converges to µrasp8,´q in the C8loc topology. It
follows that, for R sufficiently large, the map µraspR ´ R2,´q must intersect r´R2

transversely near any
element of Fibpr´R2

, µrasp8,´qq. Furthermore, by the implicit function theorem, there exists large R4 ą 0

such that the intersection of the union of the images of the maps µraspR1,´q for R1 P rR4,8s and the image
of r´R2 can be parameterized around this element of Fibpr´R2

, µrasp8,´qq by the interval rR4,8s.
The consequence is that, for any pγW , γIq P Fibpr´R2

, µrasp8,´qq there is a neighborhood UpγW , γIq Ă

M˚pWR2qˆBprasq such that, for sufficiently largeR, there is exactly one element of Fibpr´R2
, µraspR´R2,´qq

in UpγW , γIq and the intersection of r´R2
and µraspR´R2,´q at this point is transverse.

Therefore, we have “matched up” a point ofMpras,W8, rasqwith a corresponding point ofM˚pXRq for
large R. It remains to show that this is a surjective map, i.e. it accounts for all points ofM˚pXRq.

Lemma 3.4.17. For any large R and any element ofM˚pXRq given by

pγ1W , γ
1
Iq P Fibpr´R2

, µraspR´R2,´qq

for some irreducible critical point ras, there exists a point pγW , γIq such that pγ1W , γ
1
Iq P UpγW , γIq.
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Proof. Suppose that this is not the case. Then, there is a sequence R1n Ñ 8 and a sequence of points
pAn, ϕnq PM˚pXR1n

q that do not satisfy this condition.
By Theorem 3.4.3, after passing to a subsequence and applying gauge transformations, they converge in

the sense of Definition 3.4.2 to an element of the form

pγW , γIq P Fibpr´R2
, µrasp8,´qq.

Write pAn, ϕnq as the point

pγW,n, γI,nq P Fibpr´R2
, µranspR

1
n ´R2,´qq.

Since the fiber products Fibpr´R2
, µranspR

1
n ´R2,´qq are disjoint for distinct critical points rans, we must

have rans “ ras for large n, otherwise there would be no convergence.
By Definition 3.4.2, it is immediate that γW,n converges to γW .
Fix n large enough. Then, one has that µraspR1n ´ R2, γI,nq “ r´R2

pγW,nq, so it follows as n Ñ 8 that
µraspR

1
n ´R2, γI,nq converges to µrasp8, γIq. By Lemma 3.4.15, this implies γI,n converges to γI .

Therefore, pγW,n, γI,nq converges to pγW , γIq in the topology ofM˚pWR2q ˆ Bprasq. This is a contradic-
tion, because then certainly one of these elements must lie inside UpγW , γIq.

We have now all but proven the theorem. By these previous results, it follows that, for large R,

M˚pXRq “ YrasMpras,W8, rasq.

It remains to show that XR does not have any reducible solutions for large R. By Lemma 7.1 of [LRS17],
the Dirac operator D`pXRq has no kernel for sufficiently large R. This immediately implies that there are
no reducible solutions inMpXRq.

An outline of the proof of this is as follows, and the reader is referred to [LRS17] for a complete proof.
Let ψ be an element of the kernel of D`pXRq. Write ϕ for the restriction of ψ to W . Momentarily write D
for the Dirac operator with APS boundary conditions on W introduced in the previous section. Then, after
a series of calculations, it is found that for sufficiently large R, ϕ is in the kernel of an operator written as
D1 `K, where D1 is isomorphic to D ‘D˚ and K has arbitrarily small operator norm. Since D is assumed
to be an isomorphism, and the kernel of an operator is stable under small perturbations (see Theorem 5.17
in Chapter IV of [Kat66]), it follows that ϕ “ 0.

It remains to show that the restriction of ψ to IR is equal to zero as well. Since ϕ “ 0, the restrictions of
ψ|IR to the boundary of IR are equal to zero. By the unique continuation theorem for solutions of the Dirac
equation (see Section 7 of [KM07]), it follows that ψ|IR “ 0 as well.

Therefore,MpXRq “M˚pXRq for large R, and the desired theorem has been proved.
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3.5 Completion of the proof and an obstruction to positive scalar cur-

vature

The only remaining part of the proof of Theorem 3.4.1 is to show the (modulo 2) equality

ÿ

rasPC˚

#Mpras,W8, rasq “ Lefpmo
oq.

For any two irreducible critical points ras, rbs, the dimension of the moduli space Mpras,W8, rbsq is
grQprasq ´ grQprbsq.

Modulo 2, the Lefschetz number of mo
o is equal to its trace. Therefore, the moduli space is nonempty iff

the Q-grading of ras is greater than or equal to that of rbs. If we order the interior critical points in decreasing
order of Q-grading, then the matrix of mo

o with respect to this ordered basis is upper triangular, and clearly
has trace equal to

ř

rasPC˚ #Mpras,W8, rasqmodulo 2.
We conclude from all of the above work that the splitting formula of Theorem 3.2.1 holds modulo 2:

λSW pXq “ hpY q ` Lefpmo
oq.

The modulo 2 restriction can be removed, but requires keeping track of orientations in terms of how
the points ofMpra,W8, rasq are counted in the calculation of the Lefschetz number. Like the last chapter,
this (roughly) makes use of the machinery of determinant index line bundles, but the arguments are more
technical and outside of the scope of this thesis.

To finish off this section, chapter, and thesis, we give a curious application of the invariant λSW pXq and
the splitting formula to the study of positive scalar curvature metrics on 4-manifolds.

The main question in this setting is, given a manifold X of dimension n, when does it admit a metric of
positive scalar curvature? For n ě 5, a complete answer to this question is given for simply-connected X

by the work of Stolz [Sto90]. For n “ 1, the question is trivial, while for n “ 2, the answer follows from the
uniformization theorem for compact surfaces. For n “ 3, the question is answered by Perelman’s resolution
of the geometrization conjecture.

For n “ 4, however, there is no conclusive answer. One of the most interesting obstructions to positive
scalar curvature in four dimensions comes from Seiberg-Witten theory.

Theorem 3.5.1. Let X have dimension 4 and satisfy b`2 pXq ě 2. Then, if X admits a metric of positive scalar
curvature, its Seiberg-Witten invariant for any spinc structure vanishes.

Proof. Choose a metric of positive scalar curvature on X . Then, we will show that X does not admit any
irreducible solutions.

Let pA,ϕq be some solution of the Seiberg-Witten equations on X . Let ∇A be the covariant derivative
associated to the connection A. Then, the square of the Dirac operator DA and the covariant Laplacian can
be related by the formula

D´AD
`
Aϕ “ ∇

˚
A∇Aϕ`

1

2
ρpF`A qϕ`

s

4
ϕ.

This formula is known as the Lichnerowicz-Weitzenböck formula, and is also important for deriving the
initial estimate for the proof of compactness of the space of solutions to the Seiberg-Witten equations.
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Taking the inner product with ϕ and then integrating on X , this yields the formula

||D`Aϕ||
2
L2 “ ||∇Aϕ||2L2 `

1

2

ż

X

xρpF`A qϕ,ϕydvolX `
ż

X

s

4
|ϕ|2dvolX

where s is the scalar curvature.
Using the fact that pA,ϕq satisfies the Seiberg-Witten equations, it follows that

0 “ ||∇Aϕ||2L2 `
1

2
||ϕ||4L4 `

ż

X

s

4
|ϕ|2dvolX .

If the scalar curvature s is positive, then the right-hand side is positive unless ϕ “ 0, so the solution
pA,ϕqmust be reducible if it is to exist.

Since there are no irreducible solutions, the Seiberg-Witten invariants must vanish.

However, as mentioned in the statement of the theorem, this does not work for manifolds with b`2 pXq “
0.

The theory presented in this thesis allows one to derive an obstruction to positive scalar curvature for
4-manifolds X with a homology orientation that satisfy assumptions (A1) and (A2). Recall assumption
(A1) states that X has the integral homology of S1 ˆ S3, while assumption (A2) states that X has an em-
bedded integral homology three-sphere Y such that the fundamental class of Y generates H3pX;Zq and the
generator agrees with the homology orientation.

Theorem 3.5.2. Any manifold X satisfying (A1) and (A2) such that λSW pXq ‰ hpY q modulo 2 cannot admit a
metric of positive scalar curvature.

Proof. Since X admits a metric of positive scalar curvature, it follows from a theorem of Schoen and Yau
in [SY72] that the generator of H3pX;Zq can be represented by an embedded 3-manifold M that admits a
metric of positive scalar curvature.

Then, it is immediate that any lift of M to the cyclic cover rX is separating, that is rX ´ M has two
connected components. Furthermore, it is clear that there is a copy of Y in each component of rX ´M .

These two copies of Y are connected by a cobordism given by appending some k copies of W end-to-
end, denoted asW k. The two components ofW k, denotedW k

´ andW k
` define cobordisms from Y toM and

M to Y . Since Floer homology is functorial with respect to cobordisms, we have HM ˚pW
kq “ pHM ˚pW qq

k

and the following diagram commutes:

HM ˚pMq

HM ˚pY q HM ˚pY q

HM˚pW
k
`qHM˚pW

k
´q

HM˚pW q
k

However, since M has positive scalar curvature, we can show that HM ˚pMq “ 0.
First, we show that there are no irreducible critical points. Any critical point a induces a constant trajec-

tory γa which solves the Seiberg-Witten equations on r0, 1s ˆ Y , and therefore certainly induces a solution
to the Seiberg-Witten equations on S1 ˆ Y with the standard metric on S1. However, this metric has posi-
tive scalar curvature, so by Theorem 3.5.1, it follows that this solution must be reducible and therefore the
critical point must be reducible.
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Lemma 36.1.1 of [KM07] shows that the differential map B
s

u counting reducible trajectories from boundary-
stable critical points to boundary-unstable critical points vanishes as well in this situation.

By definition, this implies the map j˚ in the exact triangle vanishes and so HM ˚pMq “ impj˚q “ 0. This
implies now that the operator HM ˚pW q

k “ 0, and so the operator HM ˚pW q is nilpotent. It follows that its
Lefschetz number must be zero, and then the theorem follows given the splitting formula.

Theorem 3.5.2 was first proved in a different way by Lin in [Lin16]. This article is interesting in its
own right, as in the process of proving the theorem it sets up a large amount of the analysis necessary for
understanding the Seiberg-Witten equations on general end-periodic 4-manifolds.
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