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1 Introduction

The spectral sequence is a tool in homological algebra that finds wide application in algebraic topology

and algebraic geometry.

They were discovered by Jean Leray in 1946 in the context of calculating a type of cohomology theory

in algebraic geometry called sheaf cohomology, which is a cohomology theory on a structure called a sheaf.

Leray attempted to make steps towards calculating the cohomology by instead examining the cohomology

of a related sheaf called the pushforward sheaf. He found that the cohomology groups of the pushforward

sheaf formed a cochain complex, so he took the cohomology. These cohomology groups again formed a

cochain complex, so he took cohomology again. Eventually, after taking cohomology continuously, the

groups converged to the cohomology of the sheaf.

Although this idea of constantly taking (co)homology may seem counterintuitive if we want to make

actual calculations, we will see later that in practice this is not an issue if we construct our spectral

sequence right.

We will talk about an important spectral sequence in algebraic topology called the Serre spectral

sequence, which comes in both homological and cohomological varieties. Given a fibration E → B with

fiber F , this spectral sequence relates the (co)homology of the total space E to the (co)homologies of

B and F . This enables us to calculate the (co)homology of one of the spaces from the (co)homology of

the two others. Given the wide variety of fibrations, the Serre spectral sequence can be a very powerful

computational tool.

We will begin with a discussion of fibrations and their application to homotopy theory in Section 2.

Then, we will proceed to give a qualitative feel for spectral sequences in Section 3, computing a couple of

examples. In Section 4, we will do all of the homological algebra groundwork and construct the spectral

sequence of a filtered chain complex. In Section 5, we will translate this to topology and construct the

Serre spectral sequence. In Section 6, we will discuss the product structure of the cohomological Serre

spectral sequence. We will end in Section 7 and perform several calculations of both homology and

cohomology using our spectral sequence.

2 Fibrations

The fiber bundle is a useful construction in topology that can be used to provide compact descriptions of

complicated spaces.
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From the perspective of homotopy theory, however, it turns out that we don’t need all of the nice

properties of fiber bundles. In fact, the only property that we are interested in is the homotopy lifting

property, which we define below.

Definition 2.1. A map π : E → B has the homotopy lifting property with respect to X if given

a homotopy ft : X × [0, 1] → B and a lift f̃0 : X → E of f0 : X → B, there exists a homotopy lift

f̃t : X × [0, 1] → E restricting to f̃0 on X × {0}. This is illustrated in the diagram below, with the f0

arrow implicit.

X E

X × [0, 1] B

f̃0

π
f̃t

ft

We can verify as a quick example the homotopy lifting property for the fiber bundle F ×B → B.

Example 2.2. The fiber bundle F ×B → B has the homotopy lifting property with respect to any space

X.

Proof. Denote the components of f̃0(x) in F ×B by (g0(x), f0(x)).

Then we can define f̃t(x) = (g0(x), ft(x)) as a trivial lift. �

We can also define homotopy lifting for pairs.

Definition 2.3. A map π : E → B has homotopy lifting property with respect to (X,A) if given

a homotopy ft : X × [0, 1] → B with a lift g̃0 : X → E of f0 and a lift g̃t : A × [0, 1] → E of ft|A, there

exists a homotopy lift f̃t : X × [0, 1]→ E restricting to g̃0 and g̃t on the appropriate domains.

We will continue by getting rid of fiber bundles and instead considering spaces called fibrations which

have the homotopy lifting property with respect to some specified class of spaces X.

Definition 2.4. A (Hurewicz) fibration is a map π : E → B which satisfies the homotopy lifting

property with respect to any topological space X. A Serre fibration satisfies the homotopy lifting

property with respect to the disk Dn for any n.

Due to the generality of their definition, fibrations come in all shapes and sizes. We showed above

that the product space F × B → B is a fibration, but we can come up with a couple of more nontrivial

examples.
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Example 2.5. We can construct a fibration S3 → S2 with fiber S1.

Identify S3 with the unit ball |z0|2 + |z1|2 = 1 in C2. Noting that CP1 is homeomorphic to S2, we can

take the projection map p : C2 − {0} → CP1 ' S2 and restrict to S3 to get a map π : S3 → S2.

Picking a point in S2, its fiber in C2 is a line {(λz0, λz1) |λ ∈ C} for some fixed z0, z1 ∈ C. Restricting

that to S3, the fiber is the solution set to the equation |λ|2(|z0|2 + |z1|2) = 1, which is homeomorphic to

S1.

This fibration is known as the Hopf fibration, with a pretty artist’s rendition depicted below. As

we will see later in this section, it will allow us to easily calculate the value of π3(S
2).

Source: https://common.wikipedia.org/wiki/File:Hopf Fibration.png

Example 2.6. There exists a fibration SO(3)→ S2 with fiber SO(2).

This fibration is produced by the natural action of SO(3) on S2. The elements of SO(3) are param-

eterized by the pair (p, θ), where p is a point on S2 and θ is the counterclockwise rotation angle of the

element about the axis through p.

Our fibration is therefore just the projection map (p, θ)→ p. The fiber of a point p is just the set of

rotations that fix p. These are just rotations of the plane perpendicular to the axis through p, which is

homeomorphic to SO(2).

Our next example is a much more general class of fibrations that we construct as a “twisted product”.

For any readers interested in category theory, this is just the pullback in the category of topological

spaces.

Example 2.7. Given spaces X,Y, Z with maps f : X → Z and g : Y → Z, the fiber product is a space

X ×Z Y with projections πX : X ×Z Y → X and πY : X ×Z Y → Y such that the following square

commutes:
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X ×Z Y Y

X Z

πX

πY

g

f

Furthermore, for any other space W with projection maps wX : W → X and wY : W → Y such that

the square commutes, there is a unique map such that the following diagram commutes:

W

X ×Z Y Y

X Z

∃! wY

wX

πX

πY

g

f

Concretely, we can define the fiber product as the set of pairs (x, y) ∈ X × Y such that f(x) = g(y)

with πX and πY being the natural projections. Furthermore, it is not hard to see that these projections

are fibrations.

This next example is a special example of the fiber product and is quite important. It shows that we

can “transform” any continuous map into a fibration.

Example 2.8. Given a continuous map f : X → Y , let Xf be the fiber product

Xf Hom([0, 1], Y )

X Y
f

where the path space Hom([0, 1], Y ) is given the compact-open topology and the corresponding map

to Y is the end point map.

We can see immediately that Xf is homotopy equivalent to X by applying the concrete definition of

fiber product. To see this, we can deformation retract Xf to the set (x, γf(x), where γf(x) is the constant

path at f(x). This is canonially homeomorphic to X, which gives our homotopy equivalence.

The space Xf is known as the homotopy fiber of f .

It is worth noting that in a fibration, the fibres can very significantly and are not always as nice as

in our examples. However, if we have a path-connected base B, then it turns out that all the fibers are
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homotopy equivalent. This is a simple application of the homotopy lifting property and is a good exercise

for the reader.

The below theorem serves as a strong example of the usefulness of the homotopy lifting property in

homotopy theory.

Theorem 2.9. Let π : E → B be a Serre fibration with B path-connected. Pick a basepoint b0 ∈ B and

x0 ∈ π−1(b0) = F . Then we have the following long exact sequence of homotopy groups

· · · → πn(F, x0)→ πn(E, x0)→ πn(B, b0)→ πn−1(F, x0)→ · · · → π0(F, x0)→ π0(E, x0)→ 0

where the map πn(E, x0)→ πn(B, b0) is induced by π.

Before we prove this, we need to mention a useful property of Serre fibrations.

Lemma 2.10. A Serre fibration has the homotopy lifting property for any CW pair (X,A).

Proof. Lift cell by cell. �

Now that we have a better understand of the lifting properties of a Serre fibration, we can prove the

long exact sequence theorem.

Proof. This proof closely follows the one given in [Hatcher].

To show that this statement holds, we will show that π∗ : πn(E,F, x0)→ πn(B, b0) is an isomorphism

for all n ≥ 1.

First, we show surjectivity. Pick a homotopy class in πn(B, b0) represented by a map of pairs f :

(In, ∂In)→ (B, b0).

Since f restricts to the constant map b0 on ∂In, it does so as well on the subspace Jn−1. The constant

map to x0 out of Jn−1 lifts f |Jn−1 . This gives us enough data to use the homotopy lifting property on

the pair (In−1, ∂In−1) and get a lift f̃ : In → E of f .

Since f(∂In) = b0, we have f̃(∂In) ⊂ π−1(b0) = F . We also have f̃ maps Jn−1 to x0, so its homotopy

class lies in πn(E,F, x0). By definition, π(f̃) = f and π is surjective.

To show injectivity, pick maps of triples f̃ , g̃ : (In, ∂In, Jn−1) → (E,F, x0) such that pf̃ and pg̃ are

homotopic.

Let F : (In× I, ∂In× I)→ (B, b0) be a homotopy from pf̃ to pg̃. Note that f̃ and g̃ give lifts of F on

In×{0} and In×{1}. The constant map to x0 serves as a lift on Jn−1×I. We again apply the homotopy
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lifting property with this data, this time to the pair (In, ∂In) to get a lift F̃ : (In×I, ∂In×I, Jn−1×I)→

(E,F, x0). This forms the desired homotopy between f̃ and g̃.

Most of the long exact sequence then follows from plugging in πn(B, b0) for πn(E,F, x0) in the homo-

topy long exact sequence of a pair.

To derive the end of the long exact sequence, we need to show that π0(F, x0) surjects onto π0(E, x0).

This is where we use the path-connectedness of B. We need to show that F intersects any path-component

of E. Given a point x ∈ E, we can construct a path from x to some point in F by taking a path from

π(x) to b0 and then lifting. �

As we can see, fibrations interact very nicely with homotopy groups and we can get a simple relation

of the homotopy groups of the total space E with that of the base space B and the fiber F .

The rest of this paper will be devoted to understanding the relationships between the homology

groups of E, B, and F . This relationship is considerably more complicated and requires the use of a

computational tool called a spectral sequence.

3 What Is A Spectral Sequence?

In algebraic topology, we often make use of algebraic tools to compute homology groups. For example, we

use short exact sequences like in the Universal Coefficient Theorem, or tools like the long exact sequence

of a pair.

Spectral sequences are another such tool that, while complicated and containing a huge amount of

data, often allow us to approximate difficult to calculate homology groups with other homology groups

that are much easier to calculate.

We give a general definition below and then give the reader a feel for the concept with a couple of

specific examples.

Definition 3.1. Let A be an abelian category. A spectral sequence for homology is a sequence of

objects Ei, Ei+1, . . . with i ≥ 0 and endomorphisms dr : Er → Er satisfying the following two relations:

• dr ◦ dr = 0

• Er+1 = H(Er) = ker(dr)/ im(dr)

The objects Er are called the “pages” of a spectral sequence. This is because in practice they are

generally bigraded modules or double complexes, which contain a lot of data and visually look like “pages”
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of modules.

Example 3.2. The simplest spectral sequence starts with the E0 page equal to some chain complex C.

Its differential d0 is just the canonical boundary map on C.

Then we can start calculating. The E1 page is the homology of C with respect to d, so it is a chain

complex with terms Hi(C). The only natural differential map here is the zero map.

As a result, we find that, by definition, the Ei page for i ≥ 2 is equal to 0. In cases like these, we

say that the spectral sequence collapses at E1 and the output of the sequence is the homology groups

of the chain complex.

Example 3.3. We can also use spectral sequences to calculate the homology of the total complex of a

double complex.

A double complex C has modules Cp,q with boundary maps dh : Cp,q → Cp−1,q and dv : Cp,q → Cp,q−1

such that dh ◦ dh = dv ◦ dv = 0 and dhdv = dvdh.

We can then construct the total complex T (C) of C as a chain complex satisfying T (C)n = ⊕p+q=nCp,q.

The boundary map dn : T (C)n → T (C)n−1 is defined on components cp,q ∈ Cp,q by dn(cp,q) = dv(cp,q) +

(−1)qdh(cp,q).

It turns out that the homology of the total complex arises from a spectral sequence. This is the most

natural spectral sequence possible, which we start by setting the E0 page to equal C.

We set the differential d0 to be the vertical differential of C, depicted below.

Cp−1,q−1

Cp−1,q

Cp−1,q+1

Cp,q−1

Cp,q

Cp,q+1

Cp+1,q−1

Cp+1,q

Cp+1,q+1

Therefore, the E1 page has E1
p,q = Hq(Cp,q). We then set the differential d1 to be maps induced on
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homology by the horizontal differential. Since composition is preserved, we still have that d1 ◦ d1 = 0, so

we can take the homology going leftward.

E1
p−1,q−1

E1
p−1,q

E1
p−1,q+1

E1
p,q−1

E1
p,q

E1
p,q+1

E1
p+1,q−1

E1
p+1,q

E1
p+1,q+1

This gives us a page E2 with E2
p,q = Hp(Hq(Cp,q)). As a sneak peak, the diagram below shows how

the differentials will be defined.

E2
p−2,q−1

E2
p−2,q

E2
p−2,q+1

E2
p−1,q−1

E2
p−1,q

E2
p−1,q+1

E2
p,q−1

E2
p,q

E2
p,q+1

E2
p+1,q−1

E2
p+1,q

E2
p+1,q+1

In general, we will see that the differentials dr will be defined as maps from Erp,q to Erp−r,q+r−1. Note

that these differentials, including the ones we described above, reduce the sum of the coordinates, or

the “total degree” of the total complex, by 1. However, qualitatively, it seems like they are getting

increasingly far away from their source Erp,q. In fact, since we have Erp,q = 0 for any p < 0 or q < 0, we

find that the differentials at Erp,q will vanish for sufficiently large r and Erp,q will remain constant. We call

this last module E∞p,q and bundle up all of them into the “E∞” page. This geometric description of the

differentials suggests why this spectral sequence is at all useful. Instead of trying to calculate the explicit

differentials and resulting homology of the total complex, we calculate “approximate” differentials dr that

still decrease the degree of a chain by 1, but are easier to calcluate. Taking homology repeatedly acts as

a way of refining our original group E0
p,q. As we do this, we find that dr gets “smaller” as r goes to ∞,

and our limiting process then hopefully ends with E∞p,q equal to the homology of the total complex.

We will prove in the next section that there is a spectral sequence with first page E0 = C that satisfies

E∞p,q = Hp+q(T (C)).
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Another thing that the reader may have noticed is that taking the vertical homology and then the

horizontal homology was somewhat arbitrary. We will prove in the next section that taking the horizontal

homology and then the vertical homology, along with the natural choice of direction for the generalized

differentials, also converges to the homology of the total complex.

A fun exercise from [Vakil] makes use of this to prove the snake lemma.

Example 3.4. In the Snake Lemma, we are given the two exact rows (drawn to match our spectral

sequence orientations)

0 C ′ B′ A′ 0

0 C B A 0

γ β α

and we want to show that there exists an exact sequence

0→ ker(α)→ ker(β)→ ker(γ)
δ−→ coker(α)→ coker(β)→ coker(γ)→ 0

Plugging this into the double complex spectral sequence and taking the homology horizontally gives

us that E1 is 0 by exactness of the rows, and therefore E∞ is 0.

Taking homology vertically, however, gives us the E1 with the differentials drawn:

0 coker(γ) coker(β) coker(α) 0

0 ker(γ) ker(β) ker(α) 0

We can also draw the E2 page:

0 H(coker(γ)) H(coker(β)) H(coker(α)) 0

0 H(ker(γ)) H(ker(β)) H(ker(α)) 0

We slightly abuse notation here to remind the reader how each E2 module arose as the homology of

an E1 module. The arrow is the sole nonzero differential, so the spectral sequence stabilizes everywhere
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else. This immediately tells us that the homologies at ker(α), ker(β), coker(β), and coker(γ) are 0. This

gives us exactness of 0→ ker(α)→ ker(β)→ ker(γ) and coker(α)→ coker(β)→ coker(γ)→ 0.

We also have that H(ker(γ)) and H(coker(α)) must disappear since the differentials on the E3 page

are by definition identically 0. Therefore, the differential between them is an isomorphism. Unrolling

the definition, this gives us that coker(ker(β) → ker(γ)) = ker(coker(α) → coker(β)). This is exactly

the condition that tells us that we can connect our two exact sequences to make the desired long exact

sequence.

To drive the point home, we show the computational power of the double complex spectral sequence

by proving the “twenty-five lemma”, a 5× 5 analogue of the nine lemma that would normally require a

somewhat cryptic diagram chase to prove.

Example 3.5. Let’s plug in the following diagram into the spectral sequence, where all the columns and

all of the rows but the top one are exact.

0 0 0 0

0 0

0 0

0 0

0 0

0 0 0 0

D5 D4 D3 D2

C5 C4 C3 C2

B5 B4 B3 B2

A5 A4 A3 A2

By exactness of the columns, taking vertical homology tells us that the E∞ page is 0.

Taking horizontal homology, all of the rows but the top row disappear, so the E1 page just consists

of the homology of the top row. Since the differentials from E1 onwards are equal to 0, we find that

E1 = E∞ and therefore the homology of the top row must vanish as well and it is exact.

Note that this proof never actually uses the fact that our grid is 4 × 4. In fact, modulo typesetting

time, we could have done this proof for an N ×N grid for any large N !
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4 Spectral Sequences of Filtered Complexes

Recall our example of the total complex above. We will define its differentials and prove it by constructing

the spectral sequence of a more general construction called a filtered complex.

As motivation, consider results on the homology of a pair A ⊂ X or triple A ⊂ B ⊂ X of spaces. In

both cases, we have a long exact sequence relating the homology of all of these spaces.

What if we tried to generalize this? Say we take a sequence Xi ⊂ Xi+1 of subspaces indexed by

Z. Their nth singular chain groups Cn(Xi) by definition form an increasing sequence of submodules of

Cn(X). The singular chain complexes C∗(Xi) piece together with the inclusion maps to form a grid of

chain complexes. We will give a couple of definitions below to formalize this idea.

Definition 4.1. A filtration of a module M is a sequence of subspaces

· · · ⊂ F−1M ⊂ F0M ⊂ F1M ⊂ . . .

indexed by Z such that ∪iFiM = M and ∩iFiM = ∅.

Definition 4.2. A filtered complex is a chain complex C together with a filtration on each Ci such

that the boundary maps preserve the filtrations, i.e. ∂FjCi ⊂ FjCi−1.

Often it serves us better to look at the graded structure of a filtration than the actual filtration itself.

In nice cases, we can rebuild the original chain complex from its graded structure.

Definition 4.3. Given a module M with a filtration F , the associated graded module GM is equal

to ⊕i∈ZGiM , where GiM = FiM/Fi−1M .

This also has an analogue in filtered complexes.

Definition 4.4. Given a complex C with a filtration F , the associated graded complex GiC is equal

to the quotient of chain complexes FpC/Fp−1C.

As a final note, observe that since the filtrations play nicely with the boundary map, a filtration on

C induces a filtration on its homology. From this, we can talk about the graded pieces GpH∗(C) of its

homology as well.

In the case of the homology of a pair, we are able to compute the homology H(X) from the homologies

H(A) and H(X/A), which correspond to the graded pieces of the filtration A ⊂ X.
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Similarly, the idea here is to calculate the homology of a chain complex C by picking a filtration that

has a nice graded structure with a homology that is easy to compute. A natural question to ask in the

context of what we have gone over previously is if we can plug in the groups H∗(GpC) into a spectral

sequence that gives us the groups H∗(C) on the E∞ page.

This turns out to be almost exactly correct.

Theorem 4.5. Given a filtered complex C with filtration F , there is a spectral sequence E such that

E∞p,q = GpHp+q(C).

We say in this situation that E abuts to Hp+q(C). A common shorthand that we will use later for

this is E0
p,q ⇒ Hp+q(C).

We will start by constructing a few low-dimensional pages and differentials and then generalize.

The natural choice for the E0 page is

E0
p,q = GpCp+q

Each of the columns are the graded complexes. The choice of Cp+q instead of Cq is a strange one,

but it will become clear why we chose it that way as we continue to derive the spectral sequence. The

differential d0 is just the regular boundary map GpCp+q → GpCp+q−1. Therefore, the E1 page satisfies

E1
p,q = Hp+q(GpC)

Given our goal at the E∞ page, we can now see why the E0 page was chosen the way it was. We

will construct a series of different differentials dr such that taking successive homology of these over

Hp+q(GpC) will eventually “switch the grading” and give us GpHp+q(C).

Therefore, d1 : E1
p,q → E1

p−1,q is a map Hp+q(GpC) → Hp+q−1(Gp−1C). The definition of d1 follows

from a bit of diagram chasing. Recall there is a short exact sequence of chain complexes 0 → Fp−1C →

FpC → GpC → 0. Therefore, taking the long exact sequence of homology gives us a natural map

Hp+q(GpC) → Hp+q−1(Fp−1C). Going along the long exact sequence for 0 → Fp−2C → Fp−1C →

Gp−1C → 0 gives us another map Hp+q−1(Fp−1C)→ Hp+q−1(Gp−1C). We then take the composition to

be d1.

The modules E2
p,q are the homology with respect to d1. Since they are a “homology of a homology”,

there is no nice formula for them like in the previous pages. However, we can lift any element α ∈ E2
p,q
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to a representing element a ∈ E1
p,q.

We make use of this to define the differential d2 : E2
p,q → E2

p−2,q+1. Given some α ∈ E2
p,q, lift

it to a ∈ E1
p,q = Hp+q(GpC). Using the LES of a pair, map it to Hp+q−1(Fp−1C) again. Since

α is a cycle with respect to d1, by definition of d1 we find that the image of a in Hp+q−1(Fp−1C)

is in the kernel of Hp+q−1(Fp−1C) → Hp+q−1(Gp−1C). By the LES of a pair, this is the image of

Hp+q−1(Fp−2C)→ Hp+q−1(Fp−1C), so there exists a lift ã of a to Hp+q−1(Fp−2C). We can then map this

lift to Hp+q−1(Gp−2C), project down to E2
p−2,q+1, and denote the total composition of these maps by d2.

This lifting property has a simple generalization to general r.

Lemma 4.6. Given α ∈ Erp,q, a representative a ∈ Hp+q(GpC), and its value δa ∈ Hp+q−1(Fp−1C), there

exists a lift δ̃a of a in Hp+q−1(Fp−rC).

Proof. We do this by induction. The case for r = 2 has already been done above.

Assume that we have a lift δ̃a
′

of a in Hp+q−1(Fp−r+1C).

Since α ∈ Erp,q, we find δ̃a
′

is in the kernel of the map Hp+q−1(Fp−r+1C)→ Hp+q−1(Gp−r+1C), which

by the LES of a pair is equal to the image of the map Hp+q−1(Fp−rC)→ Hp+q−1(Fp−r+1C). Therefore,

we can pick δ̃a to be some element in the preimage of δ̃a
′
. �

We then define in general the differential dr to be the composition:

dr : Erp,q → Hp+q(GpC)
δ−→ Hp+q−1(Fp−1C)→ Hp+q−1(Fp−rC)→ Hp+q−1(Gp−rC)→ Erp−r,q+r−1

Note that we make a few arbitrary choices in this definition, so there are a couple of well-definedness

conditions to check. Before we do that, we will attempt to get a feel for what these differentials mean as

“approximations” of the homology group GpHp+q(C).

First let us look at the differential d1 at E1
p,q.

Now we will check our well-definedness conditions. These are just long, inductive diagram chases.

The reader should try to do them at least once, since they give a good understanding of the mysterious

inner workings of the spectral sequence.

Lemma 4.7. dr(α) for α ∈ Erp,q is independent of choice of representative a ∈ Hp+q(GpC) and choice of

lift δ̃a ∈ Hp+q−1(Fp−rC)

Proof. We will prove this for d2 and then induct.
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Take a representative a+ b where a represents α and b represents a boundary d1β. We have that by

definition of d1, b is in the image of Hp+q+1(Gp+1C)→ Hp+q(FpC)→ Hp+q(GpC). Composing that with

Hp+q(GpC)
δ−→ Hp+q−1(Fp−1C) is the zero map by exactness, so δ(a+ b) = δa.

Now we need to show that d2 will be independent of the choice of lift of δa. Take two lifts δ̃a1

and δ̃a2. We have that δ̃a1 − δ̃a2 lies in the kernel of the map Hp+q−1(Fp−2C) → Hp+q−1(Fp−1C). By

exactness, this is in the image of Hp+q(Gp−1C) → Hp+q−1(Fp−2C). The image of δ̃a1 − δ̃a2 under the

map Hp+q−1(Fp−2C)→ Hp+q−1(Gp−2C) is therefore by definition in the image of d1 into E1
p−2,q+1. After

passing to E2
p−2,q+1, this becomes zero and therefore d2 is the same regardless of choice of lift.

Now we will prove this for dr, assuming that well-definedness holds for all lower-order differentials.

By our inductive hypothesis, we can take our representative to be a + b where a represents α and b

represents a boundary dr−1β ∈ Er−1. Note that dr−1 also has the map Hp+q(FpC)→ Hp+q(GpC) at the

end, so composing with δ will take b to 0 as well.

Now we need to show that dr is independent of the choice of lift of δa. Take two lifts δ̃a1 and δ̃a2.

Mapping δ̃a1 and δ̃a2 into Hp+q−1(Fp−r+1C), we find that they both map to lifts of δa to this group. By

exactness, their image in Hp+q−1(Gp−r+1C) is equal to 0.

�

Next, we need to prove that the differentials compose with themselves to 0.

Lemma 4.8. dr ◦ dr = 0 for every r.

Proof. Take an element α ∈ Erp,q and a representative a in Hp+q(GpC). Under the chain of maps that

compose dr, it gets sent to an element a′ in Hp+q−1(Gp−rC) which projects to drα. Applying dr again,

this lifts to a′ plus a boundary. In the proof of the previous lemma, we showed that this boundary

disappears under the subsequent map δ : Hp+q−1(Gp−rC)→ Hp+q−2(Fp−r−1C). Also recall that a′ is in

the image of the map Hp+q−1(Fp−rC)→ Hp+q−1(Gp−rC), so these two maps chain together by the LES

of a pair and give us 0. �

Finally, we just need to prove that our spectral sequence converges to GpHp+q(C). We are by default

taking our filtration to satisfy FiC = 0 for i < 0, so it is bounded like in the example of the double

complex and E∞p,q exists.

Proof. Pick an element α ∈ E∞p,q and its representative a ∈ Hp+q(GpC). Assuming a has image ar in Erp,q,

we require that drar = 0 for every r. By definition of dr, this means that δa lifts to Hp+q−1(Fp−rC) for
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every r. Since our filtration is 0 in negative indices and p is finite, we find that projecting the lift back

down tells us that δa = 0.

Therefore, a ∈ ker(δ), which by exactness implies that a is in the image of the map Hp+q(FpC) →

Hp+q(GpC). Taking a lift a, we project it via the mapHp+q(FpC)→ GpHp+qC = Hp+q(FpC)/Hp+q(Fp−1C).

First, we show that this map is well-defined. Take two lifts a1 and a2. Their difference lies in the

kernel of Hp+q(FpC)→ Hp+q(GpC), which by exactness is in the image of Hp+q(Fp−1C)→ Hp+q(FpC).

As a result, their difference goes to 0 under the quotient map.

Next, we need to show that this map is injective. Any element in the kernel must have a lift in the

image of Hp+q(Fp−1C)→ Hp+q(FpC). This element is then recovered by mapping to Hp+q(GpC), which

by exactness tells us that it is equal to 0.

Finally, surjectivity of this map follows by pulling back along the quotient map. Therefore, we have

an isomorphism E∞p,q ' Hp+q(C). �

The scenario of the filtered complex can be used to tackle many scenarios. To bring closure to this

section, we will prove the convergence of the double complex spectral sequence, which is trivial after we

have built up all of this machinery.

Corollary 4.9. There exists a spectral sequence E0
p,q = Cp,q ⇒ Hp+q(T (C)) for a double complex C.

Proof. We can retrieve a filtered complex from T (C) by filtering each T (C)n = ⊕p+q=nCp,q via its p-

coordinate. Namely, we set FiT (C)n = ⊕p+q=n,p≤iCp,q.

By definition, we find the graded pieces satisfy GiT (C)n = FiT (C)n/Fi−1T (C)n = Ci,n−i. Therefore,

we find that our E0 page is exactly the double complex C. It is easy to check that the first couple of

differentials agree as well by unrolling the filtered complex definition.

Convergence to Hp+q(T (C)) is immediate by our filtered complex theorem.

Note that this proof is identical if we filter by q-coordinate. This proves the assertion we made way

back in our “proofs” of the snake lemma and the sixteen lemma that the direction of the double complex

spectral sequence does not matter. �

5 The Serre Spectral Sequence

We can now construct a homological spectral sequence very important in homotopy theory known as the

Serre (or Leray-Serre) spectral sequence.

Take π : E → B to be a Serre fibration with B a path-connected CW-complex with a fiber F .
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Theorem 5.1. If π1(B) acts trivially on the fibers, then there exists a spectral sequence satisfying E2
p,q =

Hp(B;Hq(F ))⇒ Hp+q(E;Z).

As we stated in the section on fibrations, the path-connected property of B ensures that the fibers

are homotopy-equivalent and therefore the homology groups coincide, so this is well-defined.

We will prove this using the strategy from [Hutchings], constructing a filtered complex that produces

the E2 and E∞ page that we want.

Proof. Let Bp be the p-skeleton of B. We can filter the integral singular chain complex C∗(E) by defining

FpC∗(E) = C∗(π
−1(Bp)).

The graded pieces are GpC∗(E) = C∗(π
−1(Bp), π−1(Bp−1)). We can then calculate the E1 page

immediately:

E1
p,q = Hp+q(π

−1(Bp), π−1(Bp−1))

Next, the d1 differential is defined as the composition

Hp+q(π
−1(Bp), π−1(Bp−1))→ Hp+q−1(π

−1(Bp−1))→ Hp+q−1(π
−1(Bp−1), π−1(Bp−2))

Now we are at the hardest part of the proof, namely showing that E1
p,q is equal to the cellular homology

chain group CCWp (B;Hq(F )) ' Hp(B
p, Bp−1)⊗Hq(F ).

Since Hp(B
p, Bp−1) is a free group over Z generated by the p-cells of B, this is isomorphic to ⊕αHq(F ).

Let φα be the characteristic map for a p-cell Dα. We can construct a pullback square

D̃α E

Dα B

φ∗α

ξα π

φα

and set S̃α to be the preimage of the boundary Sα under ξα. We can put all of the φ∗α together to form

a map φ∗ : tα(D̃α, S̃α)→ (π−1(Bp), π−1(Bp−1)).

To show φ∗ is an isomorphism on Hp+q, it suffices to show that excision holds since the RHS then just

becomes the homology of a wedge sum of pullbacks of spheres. This follows by lifting the deformation

retract U → Bp−1 for some neighborhood U to a deformation retract π−1(U)→ π−1(Bp−1).

For the proof for ⊕αHp+q(D̃α, S̃α) ' ⊕αHq(F ), we defer the reader to [SSAT]. This proof is where

the triviality of π1(B) assumption is used.
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From these three isomorphisms, we get the desired isomorphism. Passing our map d1 through these

isomorphisms gives us the cellular boundary map. Finally, we can apply the fact that cellular and singular

homology coincide on CW complexes and derive the E2 page:

E2
p,q = Hp(B,Hq(F ))

�

6 The Cohomological Serre Spectral Sequence

Just like we have spectral sequences for homology, we can also define spectral sequences for cohomology.

We often call this a spectral sequence of cohomological type. We state the cohomological versions

of the two main results from above.

Theorem 6.1. Given a filtered cochain complex C, there exists a spectral sequence Ep,q0 = GpC
p+q ⇒

Hp+q(C).

Theorem 6.2. Given a fibration E → B with B a path-connected CW-complex and a fiber F , there exists

a spectral sequence Ep,q0 = Hp(B;Hq(F ))⇒ Hp+q(E).

The cohomological Serre spectral sequence is often more powerful, since it has an internal product

induced to the cup product on singular cohomology.

We will state the properties of this product without proof here, but refer the reader to [SSAT] for a

more detailed discussion including proofs.

Theorem 6.3. There exist bilinear products Ep,qr × Es,tr → Ep+s,q+tr satisfying the following properties:

• The product on E2 is (−1)qs times the cup product Hp(B;Hq(F ))×Hs(B;Ht(F ))→ Hp+q(B;Hq+t(F ))

where multiplication of coefficients is induced by the cup product on H∗(F ).

• The differential dr is a derivation satisfying dr(αβ) = dr(α)β + (−1)p+qαdr(β). This induces a

product on Er+1 from Er.

• The cup product on H∗(E) restricts to products on its filtered piecees, which in turn restrict to

products on its graded pieces. This product coincides with the one on E∞.
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7 Calculations

Now that we’ve waded through all of the messy homological algebra, it’s time to do some interesting

calculations with the Serre Spectral Sequence. We wield it in a manner similar to our long exact sequences

in algebraic topology, namely to try and make as many of the terms as trivial as possible and then do

our calculations from there.

Our first application is a pretty intuitively clear result on fibrations of spheres.

Proposition 7.1. There is no fibration Sm → Sl → Sn for l 6= m+ n or m 6= n− 1.

Proof. We can just plug everything into the Serre spectral sequence.

By definition of the E2 page, we have E2
0,0 = E2

n,0 = E2
0,m = E2

n,m = Z and E2
p,q = 0 everywhere else.

Note that E2
n,m and E2

0,0 will always have differentials equal to 0, so they are stable. By the homology

of Sl, we require one of the nonzero groups to equal Hl(S
l) = Z. Therefore, it is clear that we must have

l = m+ n.

Furthermore, we must have that the E2
n,0 and E2

0,m groups must vanish. Therefore, we must have the

differential dn : E2
n,0 → E2

0,n−1 has codomain E2
0,m. As a result, we have m = n− 1. �

Our next application is in examining the loop space of a sphere. The suspension of a sphere ΣSn is

well-known, it is just Sn+1. However, the loop space ΩSn is a little bit more mysterious. We can actually

use the Serre spectral sequence to calculate its homology.

Proposition 7.2. The integral homology Hi(ΩS
n) is equal to Z for i divisible by n− 1 and 0 otherwise.

Proof. There exists a path-space fibration PSn → Sn taking a path γ to its end-point, where PSn is the

space of all paths from some point x ∈ Sn. It is immediate that the fiber is the loop space ΩSn.

Taking the Serre spectral sequence, the E2 page has E2
p,q = Hq(ΩS

n) for p = 0, n and 0 otherwise.

The differentials remain at 0 until we hit the En page, where we have differentials dn : Hq(ΩS
n) →

Hq+n−1(ΩS
n).
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0

0

n− 1

2n− 2

3n− 3

· · ·

n

Z

Hn−1(ΩS
n)

H2n−2(ΩS
n)

H3n−3(ΩS
n)

Z

Hn−1(ΩS
n)

H2n−2(ΩS
n)

H3n−3(ΩS
n)

However, we observe that the path-space is contractible by retracting every path onto the constant

map to the basepoint x. Therefore, the E∞ page is 0 everywhere but E∞p,q = Z. Since the differentials are

equal to 0 past En, we must have dn is an isomorphism everywhere except for the ones going in and out

of E2
0,0. Therefore, since H0(ΩS

n) = Z, its homology is equal to Z at every multiple of n − 1. We have

that for any 0 < k < n− 1 that Hk(ΩS
n) = E2

0,k ' E2
n,k−n+1 = 0, so homology is 0 everywhere else. �

The next one, an exercise from [SSAT], involves working with the homotopy fiber.

Proposition 7.3. Compute the homology of the homotopy fiber of a map f : Sk → Sk of degree n.

Proof. The homotopy fiber is a fibration F → Skf → Sk.

We plug this into the Serre spectral sequence to get E2
p,q is equal to Hq(F ) for p = 0, k and 0 otherwise.

Since Skf is homotopy equivalent to Sk, we have the E∞ page satisfies E∞0,0 = E∞k,0 = Z.

The differentials are 0 until we hit Ek.

0

0

k − 1

2k − 2

3k − 3

· · ·

k

Z

Hk−1(F )

H2k−2(F )

H3k−3(F )

Z

Hk−1(F )

H2k−2(F )

H3k−3(F )

By our identity for E∞, we require all of the differentials to be isomorphisms except the ones at Ek0,0

and Ekk,0, so the homology for F is periodic with period k−1 on the positive homology groups. This tells

us that Hi(F ) = 0 for 0 ≤ i < k − 1 and that Hj(k−1) = H(j+1)(k−1) for j ≥ 1.
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We have that by E∞ the kernel of dk : Ekk,0 = Z → Ek0,k−1 = Hk−1(F ) is isomorphic to Z and that

this map is surjective. Therefore, we have Hk−1(F ) = Z/nZ for some n.

This is where we apply our degree idea. By the long exact sequence for homotopy on a fibration, we

have that the sequence 0→ Z ×n−−→ Z→ πk−1(F )→ 0 is exact. Therefore, we find that πk−1(F ) = Z/nZ.

Applying the LES again tells us that all the lower homotopy groups of F vanish, so we find by the

Hurewicz theorem that Hk−1(F ) = Z/nZ as well. �

The product structure on the cohomological Serre spectral sequence also enables us to effortlessly

calculate the cohomology rings of some Lie groups. These arguments follow the ones given in [Chicago].

Proposition 7.4. H∗(SU(n)) =
∧

(x3, x5, . . . , x2n−1), where we use
∧

to denote the exterior algebra of

the set of generators xi with |xi| = i.

Proof. We will use the Serre spectral sequence on the fibration SU(n− 1)→ SU(n)→ S2n−1.

In the case that n = 2, this fibration degenerates to an isomorphism SU(2) ' S3. Therefore,

H∗(SU(2)) =
∧

(x3) by definition.

We then induct on n. Plugging into the Serre spectral sequence, the nonzero Ep,q2 groups are at

p = 0, 2n − 1 and q = 3, 5, . . . , 2n − 3 by our inductive hypothesis. On these values, we have Ep,q2 =

Hq(SU(n− 1)).

Let x be a generator of E2n−1,0
2 = H0(SU(n − 1)) = Z. First, we have E0,i

2 are generated by xi for

i ∈ {3, 5, . . . , 2n− 3}.

To derive the generators of E2n−1,i
2 , we can take the product E0,i ×E2n−1,0 ×E2n−1,i. By definition,

this is just the multiplication map Z× Z→ Z, so E2n−1,i
2 is generated by xxi.

Furthermore, by the placement of the groups, we have all the differentials vanish and E2 = E∞. It is

easy to see that the cohomology of SU(n) vanishes above degree 2n− 1, so the cohomology ring becomes∧
(x3, x5, . . . , x2n−3, x) where |x| = 2n− 1 as desired. �

Proposition 7.5. H∗(U(n)) =
∧

(x1, x3, . . . , x2n−1).

Proof. This is analogous to the proof above. We can take the fibration U(n − 1) → U(n) → S2n−1.

Plugging in n = 1 gives us U(1) ' S1, so the cohomology ring of U(1) is
∧

(x1).

The resulting spectral sequence diagram, as can be seen from the fibration, is nearly identical and we

have E2 = E∞ in this case as well. �
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We conclude with a calculation of the cup product structure of H∗(ΩSn) done similarly to its coun-

terpart in [SSAT].

Proposition 7.6. H∗(ΩSn) =


ΓZ[x] n is odd∧

Z[x2k+1]⊗ ΓZ[x2k] n is even

Proof. We calculate the cohomology of ΩSn with the path-space fibration to satisfy

H i(ΩSn) =


Z n is divisible by k − 1

0 otherwise

We can learn more by applying the product structure of the cohomology spectral sequence. Set

xi to be the generator of E
0,i(n−1)
2 = H i(n−1)(ΩSn) = Z for i > 0, and set x to be the generator of

En,0 = H0(ΩSn) = Z. By the product structure, we have that the other nonzero groups En,i(n−1) are

generated by xxi.

Since the differentials dn are isomorphisms, we have that dn(x1) = x and dn(xi) = xi−1x for i > 1.

Finally, the product xix is equal to the product xxi since (−1)i(n−1)n is always equal to 1.

Now we will look at the derivation structure of the differential dn to construct relations between our

xi. This is sign-dependent.

First assume n is odd. Then we have dn(x21) = 2x1dn(x1) = 2x1x. We also have dn(x2) = x1x, so it

follows that x21 = 2x2. In general, we can construct dn(xi1) = ixi−11 dn(x1) = ixi−11 x. Assuming inductively

that xi−11 = (i− 1)!xi−1, we have that dn(xi1) = i!xi−1x = i!dn(xi), which tells us that xi1 = i!xi.

These relations tell us that the cohomology ring is the divided polynomial algebra ΓZ over the

set of xi.

In the case that n is even, we now have the sign switched on our product. In this case, by the cup

product we have x21 = −x21 → x21 = 0.

By induction, we can show x1x2k+1 = 0 for every k. Taking the derivation dn, we have it is equal to

xx2k+1 + x1x2kx = xx2k+1 − xx1x2k. Now it suffices to show that x1x2k = x2k+1. To see this, we take

dn(x1x2k) = xx2k − x1x2k−1x. By induction, x1x2k−1 = 0, so we are left with xx2k = dn(x2k+1), so we

get the required identity.

We can also show a divided polynomial algebra behavior in the even degrees. Assume that xk2 = k!x2k.

The base case is trivial. Now we take dn(xk2) = kxk−12 dn(x2) = kxk−12 x1x. Applying our inductive

hypothesis, we have this is equal to k!x2k−2x1x = k!x1x2k−2x. From our previous proof, x1x2k−2 = x2k−1,

22



so we get k!x2k−1x = k!dn(x2k), so xk2 = k!x2k as desired.

We have an exterior algebra in the odd degree and a divided polynomial algebra in the even degree,

which tells us our cohomology ring is the tensor product
∧

Z[x2k+1]⊗ ΓZ[x2k]. �

8 Closing Remarks

Spectral sequences are an incredibly useful tool for computation thanks to their beautiful, almost geo-

metric structure. However, as we have seen from some of the derivations in this paper, there is a lot of

homological algebra and diagram chasing beneath the surface.

In addition, there are a couple of things we left out that the reader may want to look at. The first is the

famous derivation of π4(S
3), which uses the Serre spectral sequence on the fibration X → S3 → K(Z, 3).

The second is the construction of spectral sequences via exact couples, which can be read about in [SSAT]

or (with caution) on the nLab.

For anyone interested in homological algebra, the Grothendieck spectral sequence is an incredibly

general spectral sequence that lets us compute the composition of derived functors.

The sources listed below are also great reads. Thanks for reading!
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